Summary of topics in differential calculus that we skipped:

- Inflection points: When $f^{\prime}(x)=0$ but it's mither a local max or min

$$
f(x)=x^{3}
$$

- Linear approximations:

The tangent line to $f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$ is a good approximation to $f(x)$ for $x \approx x_{0}$.

- Rolle's theorem: If $f(x)$ is continuous and $f(a)=f(b)$, then for some $c \in(a, b)$, $f^{\prime}(c)=0$.

- Mean valve theorem: (grearilization of Roble's the) If $f(x)$ is continuous, and $a<b$, then there is some $c \in(a, b)$ for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Note that Rolle's theorem is the special case of the MVT when $f(b)=f(a)$, and so $f^{\prime}(c)=0$.

2
Next: Weill develop integral calculus and apply it to analyzing the domes of the Hagin Sophia, the Roman Pantheon, and the St. Louis Arch.

Motivating example: Consider a 4 -hr road trip, where the velocity you traveled is the following:

Q Question: How far did you travel?
There are two ways to answer this:
Method \#(: "area under curve"

$$
\left.\begin{array}{l}
0 \leq t \leq 2:\left(30 \frac{m_{i}}{h_{r}}\right)\left(1 h_{r}\right)=30 \mathrm{mi} \\
1 \leq t \leq 3:\left(60 \frac{\mathrm{mi}^{\prime}}{\mathrm{h}_{r}}\right)\left(2 h_{r}\right)=120 \mathrm{mi} \\
3 \leq t \leq 4:\left(15 \frac{m_{i}}{h_{r}}\right)\left(1 h_{r}\right)=15 \mathrm{mi}
\end{array}\right\} \text { total distana: } 30+120+15=165 \mathrm{mi}
$$

Method \#2: "odometer"
check your odometer after i before the trip. Subtract these values:

$$
x(4)-x(0)=5 / 210 / 0-51013 / 5=165 \mathrm{mi}
$$

* This is half of the "Fundamental theorem of calculus."

It works mure gereally, not just for piecewise functions.
 velocity is the derivative of distance. Total distance is:

- Area under the curve of $x^{\prime}(t)$
- $x(b)-x(a)$.
take derivative
Big ides: Function $f(x) \xrightarrow{\text { take derivative }} f^{\prime}(x)$ "rate of charge"
area under curve
* Key concept: "net are", or "signed ares" from a to b:

Example: Consider the following road trip:
$0 \leqslant t \leqslant 1$: Traveling away from home at 60 mph
$1 \leq t \leq 2$: Traveling towards home at 30 mph .

Properties:
(1) $\int_{a}^{a} f(x) d x=0$
(2) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
(3) $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(4) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
(5) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

${ }^{(1)}$
Riemann sums "approximate area under the curve"

Let $\Delta x=1 / 6$
Wet Riemann sum: Area $=f(0) \Delta x+f(1) \Delta x+f(2) \Delta x+f(3) \Delta x+f(4) \Delta x+f(5) \Delta x$
Right Rieman sum: Area $=$

$$
f(1) \Delta x+f(2) \Delta x+f(3) \Delta x+f(y) \Delta x+f(5) \Delta x+f(6) \Delta x \text {. }
$$

Alternatively, the midpoint, on any other point can be chosen as height.

Regardless of which Riemann sum we chase,

$$
\begin{gathered}
\text { Area }=\lim _{\Delta x \rightarrow 0}\binom{\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x}{\int_{a}^{b} f^{\downarrow}(x) d x}=\int_{a}^{b} f(x) d x
\end{gathered}
$$

Recall "sigma notation": $\quad \sum_{k=1}^{6} k=1+2+3+4+5+6=\sum_{i=1}^{6} i$.
${ }^{*}$ "dummy variable"
Properties: $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$

$$
\sum_{k=1}^{n} C a_{k}=C \sum_{k=1}^{n} a_{k}
$$

Identities: $\sum_{k=1}^{n} k=1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$

$$
\begin{aligned}
& \sum_{k=1}^{n} k^{2}=1+4+9+\cdots+(n-1)^{2}+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{k=1}^{n} k^{3}=1+8+27+\cdots+(n-1)^{3}+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

Riemann sum example: Compute $\int_{0}^{2}\left(x^{2}+1\right) d x$. Let $\Delta x=\frac{2-0}{n}=\frac{2}{n}$
Subintervals $\left[0, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{4}{n}\right], \ldots,\left[\frac{2(n-1)}{n}, 2\right]$
Right endpoint: $x_{i}^{*}=\frac{2 i}{n}$

$$
\begin{aligned}
& \text { Area }=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
&= \sum_{i=1}^{n} f\left(\frac{2 i}{n}\right) \cdot \frac{2}{n} \\
&= \sum_{i=1}^{n}\left(\left(\frac{2 i}{n}\right)^{2}+1\right) \cdot \frac{2}{n}=\sum_{i=1}^{n}\left(\frac{8 i^{2}}{n^{3}}+\frac{2}{n}\right) \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8 i^{2}}{n^{3}}+\frac{2}{n}\right)=\underbrace{\lim _{n \rightarrow \infty} \frac{8}{6} \frac{10}{6} \frac{12}{6}=2}_{(*)} \sum_{(* *)}^{n} \frac{8 i^{2}}{n^{3}}+\underbrace{\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}}_{(* \infty)}
\end{aligned}
$$

(6)
(*) $\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}=\lim _{n \rightarrow \infty} \frac{8}{n^{3}} \cdot\left[\frac{n(n+1)(2 n+1)}{6}\right]=\lim _{n \rightarrow \infty} \frac{8}{6} \cdot \frac{(n+1)(2 n+1)}{n^{2}}=\left[\frac{4}{3}\right.$
(**) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}=\lim _{n \rightarrow \infty} \frac{2}{n} \cdot \sum_{i=1}^{n} 1=\frac{2}{n} \cdot n=2$
Thus, $\int_{0}^{2}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\frac{4}{3}+2=\frac{10}{3}$
Well of Oat 22-26
Area function $F_{i x} f(x)$ and a reel number, a.
Define $A(x)=\int_{a}^{x} f(t) d t$
= "area mover the curve
 of F, from a to x."
Clearly, $\quad A(a)=\int_{a}^{a} f(t) d t=0$.
Remark:

Note that $A(x+h)-A(x) \approx f(x) \cdot h$

$$
\Rightarrow \frac{A(x+h)-A(x)}{h} \approx f(x)
$$

Take $\lim _{h \rightarrow 0}$ of both sides: $A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=f(x)$

Big idem: If $A(x)$ is the area function of $f(x)$, then $\frac{d}{d x}(A(x))=f(x)$.
In other words: "the derivative ic area functions are inverse functions.

This is the Endamental Theorem of Calculus, Part 1.
If f is continuous on $[a, b]$ and differentiable on (a, b) then $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.
We say that $A(x)$ is an antiderivative of $f(y)$.
Poposition: If $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ (i.e., $F^{\prime}(x)=G^{\prime}(x)=f(x)$), then $F(x)-G(x)=C$, for some constant. (Because $F^{\prime}-G^{\prime}=0 \Rightarrow F-G=C$).

Consider a function $f(x)$. We lenis $A(x)$ is an antidervative.
let $F(x)$ be any other antiderivative.
Thun $F(x)=A(x)+C \Rightarrow F(b)-F(a)=(A(b)+C)-(A(a)+C) \quad[$ Recall: $A(a)=0$.

$$
=A(b)=\int_{a}^{b} f(x) d x
$$

This is the Fundamental theorem of Calculus, Part 2:
If f is continuous on $[a, b]$ and F is any antiderivative of f, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Before we do example, Let's practice anti-derivatives
Notation: if $F^{\prime}(x)=f(x)$, then we write $\int f(x) d x=F(x)+C$.
We call this an indefinite integral.
A definite integral has the form $\int_{a}^{b} f(x) d x$.

8
Practice with antiderivatives (indefinite integrals)

- $\int 1 d x=x+C$
- $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1$
- $\int x^{2} d x=\frac{1}{3} x^{3}+C$
- $\int\left(3 x^{2}-4\right) d x=x^{3}-4 x+C$
- $\int e^{x} d x=e^{x}+C$
- $\int e^{k x} d x=\frac{1}{k} e^{k x}+C$
- $\int \sin x d x=-\cos x+C$
- $\int \sin k x d x=\frac{-1}{k} \cos k x+C$
- $\int \cos x d x=\sin x+C$
- $\int \cos k x d x=\frac{1}{k} \sin k x+C$
- $\int \frac{1}{x} d x=\ln x+C$
- $\int \sqrt{x} d x=\int x^{1 / 2} d x=\frac{x^{3 / 2}}{3 / 2}+c=\frac{2}{3} x^{3 / 2}+C$.

Practice with definite integrals.

$$
\begin{aligned}
& \text { - } \int_{0}^{10} 60 x-6 x^{2} d x=\left.\left(30 x^{2}-2 x^{3}\right)\right|_{x=0} ^{x=10} \\
& =\left(30\left(10^{2}\right)-2\left(10^{3}\right)\right)-\left(30\left(0^{2}\right)-20\left(0^{2}\right)\right) \\
& =3000-2000=1000 \\
& \text { - } \int_{4}^{16} 3 \sqrt{x} d x=\int_{4}^{16} 3 x^{1 / 2} d x=\left.\frac{3 x^{3 / 2}}{3 / 2}\right|_{4} ^{6} \\
& =\left.2 x^{3 / 2}\right|_{4} ^{16}=\left.2 \sqrt{x^{3}}\right|_{4} ^{16}=2 \sqrt{16^{3}}-2 \sqrt{4^{3}}=2 \cdot 64-2 \cdot 8=112 \\
& \text { - } \int_{0}^{2 \pi} 3 \sin x d x=-\left.3 \cos x\right|_{0} ^{2 \pi} \\
& =(-3 \cos 2 \pi--3 \cos 0) \\
& =-3.1+3.1=0
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-4}^{4}|x| d x=16 \quad(\text { see } \operatorname{grph}) \\
& O R=\int_{-4}^{0}-x d x+\int_{0}^{4} x d x \\
& =8+8 \quad \text { (exercise) }
\end{aligned}
$$

$$
a_{\text {area }}=8
$$

Application: Average value of a function.
Consider 3 football teams: Clemson: 8 wins

The average wins $=\frac{8+5+3}{3}=\frac{16}{3}=5.33 \ldots$
Now, consider a continual quality $f(x)$.

$$
\begin{aligned}
& \text { NCSU: } 5 \text { wins } \\
& \text { USE: } 3 \text { wins }
\end{aligned}
$$

The average value of $f(x)$ on $a \leqslant x \leqslant b$ is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
Ex: Suppose the elevation on a Simile hike is $f(x)=60 x^{3}-650 x^{2}+1200 x+4500 \mathrm{ft}$. Find the average elevation.
Ans: $\frac{1}{5-0} \int_{0}^{5} 60 x^{3}-650 x^{2}+1200 x+4500 d x$

$$
\begin{aligned}
& =\left.\frac{1}{5}\left(15 x^{4}-\frac{650}{3} x^{3}+600 x^{2}+4500 x\right)\right|_{0} ^{5} \\
& =\frac{1}{5}\left(15\left(5^{4}\right)-\frac{650}{3}\left(5^{3}\right)+600\left(5^{2}\right)+4500(5)\right) \approx 3958.3 \mathrm{ft}
\end{aligned}
$$

Derivatives us. integrals
Derivations have formulas: product, quotient, chain rule.
So we can always tale the derivative of e.g., $\sin \left(e^{\left(x^{2}+\cos x\right)}\right)$. Integrals have no such formulas. For example, $\int e^{-x^{2}} d x$ has no "closed form".
 computing integrals is more of an "art".

Recall the chain rule: $\frac{d}{d x}(F(g(x)))=F^{\prime}(g(x)) g^{\prime}(x)=f(g(x)) g^{\prime}(x) \quad$ [where $F^{\prime}=f$.]
Now integrate both sides: $\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C$
let $u=g(x)$

$$
\int f(u) d u=F(u)+C .
$$

$$
\begin{aligned}
& \text { so } \frac{d u}{d x}=g^{\prime}(x) \\
& \Rightarrow d u=g^{\prime}(x) d x
\end{aligned}
$$

Examples
(1) $\int 2(2 x+1)^{30} d x$. Let $u=2 x+1 \quad \frac{d u}{d x}=2 \Rightarrow d u=2 d x$

$$
=\int u^{30} d u=\frac{1}{31} u^{31}+C=\frac{1}{31}(2 x+1)^{31} d x
$$

(2) $\int 3 e^{10 x} d x$. Let $u=10 x, \frac{d u}{d x}=10 \Rightarrow d u=10 d x \Rightarrow \frac{3}{10} d u=3 d x$

$$
=\int \frac{3}{10} e^{u} d u=\frac{3}{10} e^{u}+C=\frac{3}{10} e^{10 x}+C .
$$

(3) $\int x^{4}\left(x^{5}+6\right)^{9} d x$. Let $u=x^{5}+6 \Rightarrow \frac{d u}{d x}=5 x^{4} \Rightarrow d u=5 x^{4} d x \Rightarrow \frac{1}{5} d u=x^{4} d x$

$$
=\int u^{9} \cdot \frac{1}{5} d u=\frac{1}{5} \int u^{9} d u=\frac{1}{5} \frac{u^{10}}{10}+C=\frac{u^{10}}{50}+C=\frac{\left(x^{5}+6\right)^{10}}{50}+C .
$$

(4) $\int(\cos x)^{3} \sin x d x$. Let $u=\cos x \Rightarrow \frac{d u}{d x}=-\sin x \Rightarrow-d u=\sin x d x$

$$
=\int-u^{3} d x=\frac{-u^{4}}{4}+C=\frac{-(\cos x)^{4}}{4}+C .
$$

Week of $0,+29-\operatorname{Nov} 2$
(5) $\int \frac{x d x}{\sqrt{1+x^{2}}}$. Let $u=1+x^{2} \Rightarrow \frac{d u}{d x}=2 x \Rightarrow d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x$

$$
=\int \frac{1}{2} u^{-1 / 2} d u=\frac{1}{2} \frac{u^{1 / 2}}{1 / 2}+C=u^{1 / 2}+C=\sqrt{1+x^{2}}+C .
$$

(6) $\int 3 x^{2} \sqrt{x^{3}+1} d x$ Let $u=x^{3}+1 \Rightarrow \frac{d u}{d x}=3 x^{2} \Rightarrow d u=3 x^{2} d x$

$$
=\int \sqrt{u} d u=\int u^{1 / 2} d u=\frac{u^{3 / 2}}{3 / 2}+C=\frac{2}{3} u^{3 / 2}+C=\frac{2}{3}\left(x^{3}+1\right)^{3 / 2}+C=\frac{2}{3} \sqrt{\left(x^{3}+1\right)^{3}}+C
$$

($) \int \frac{\sin t}{2-\cos t} d t$. Lt $u=2-\cos t \Rightarrow \frac{d u}{d t}=-\sin t \Rightarrow d u=-\sin t d t$

$$
=\int-\frac{1}{u} d u=-\ln |u|+C=-\ln |2-\cos t|+C .
$$

