Week of Oct 29 -Now 2

Area between curves

$$
\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

This even works if the region is below or straddles the x-axis.
Example 1: Find the area between the curves of $f(x)=5-x^{2}$ and $g(x)=x^{2}-3$ First, find points of intersection:

$$
\begin{aligned}
5-x^{2} & =x^{2}-3 \\
8 & =2 x^{2} \Rightarrow x= \pm 2 \\
\text { Area } & =\int_{-2}^{2}\left(5-x^{2}\right)-\left(x^{2}-3\right) d x \\
& =\int_{-2}^{2} 8-2 x^{2} d x=8 x-\left.\frac{2}{3} x^{3}\right|_{-2} ^{2}=\left(16-\frac{16}{3}\right)-\left(-16+\frac{16}{3}\right)=32-\frac{32}{3}=\frac{64}{3}
\end{aligned}
$$

Example 2: Find the area between the curves: $y=\sqrt{x}, y=x-2$, and the x-axis.

$$
\text { Area }=\int_{0}^{2}(\sqrt{x}-0) d x+\int_{2}^{4} \sqrt{x}-x d x
$$

Note that we'll need to break this into two integrals.

(2)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2}(\sqrt{x}-0) d x+\int_{2}^{4} \sqrt{x}-(x-2) d x \\
& =\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{2}+\left.\left(\frac{2}{3} x^{3 / 2}-\frac{x^{2}}{2}+2 x\right)\right|_{2} ^{4} \\
& =\frac{2}{3} \sqrt{8}+\left[\left(\frac{16}{3}-8+8\right)-\left(\frac{2}{3} \sqrt{8}-2+4\right)\right]=\frac{16}{3}+\frac{6}{3}-\frac{12}{3}=\frac{10}{3}
\end{aligned}
$$

Week of Nov 5-9
Another method: Integrate war. y.

$$
x=y^{2} \Leftarrow y=\sqrt{x}
$$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{2}(y+2)-y^{2} d y \\
&=\left.\left(\frac{y^{2}}{2}+2 y-\frac{y^{3}}{3}\right)\right|_{0} ^{2} \\
&=\left[\left(2+4-\frac{8}{3}\right)-(0+0-0)\right]=\frac{18}{3}-\frac{8}{3}=\frac{10}{3} \quad \text { (Much easier!) }
\end{aligned}
$$

Volume by slicing
Motivating example: volume of a cone.

* The radius at height y is the x-value: $y=\frac{h}{R} x \Rightarrow x=\frac{R}{h} y$

Volume of slice $=\pi r^{2}=\pi\left(\frac{h}{R} y\right)^{2} d y$
Vdume of cylinder $=\int_{0}^{h}$ "vol of slice a height y "

$$
=\int_{0}^{h} \pi\left(\frac{R}{h} y\right)^{2} d y=\int_{0}^{h} \frac{\pi R^{2}}{h^{2}} y^{2} d y=\left.\frac{\pi R^{2}}{h^{2}} \frac{y^{3}}{3}\right|_{0} ^{h}=\frac{\pi R^{2} h^{3}}{3 h^{2}}=\frac{1}{3} \pi R^{2} h
$$

Example: Volume of a hemisphere.

$$
\begin{aligned}
\text { Vol. of cylinder } & =\int_{0}^{R} \text { "vol. of slice at height } y^{\prime \prime} \\
& =\int_{0}^{R} \pi\left(R^{2}-y^{2}\right) d y=\int_{0}^{R} \pi R^{2}-\pi y^{2} d y \\
& =\left.\left(\pi R^{2} y-\pi \frac{1}{3} y^{3}\right)\right|_{0} ^{R}=\pi R^{3}-\frac{1}{3} \pi R^{3}=\frac{2}{3} \pi R^{3}
\end{aligned}
$$

Volume of other "solids of revolution".
Ex: Consider the solid formed by revolving the region under $y=\sqrt{x}$ from $x=0$ to 4 around the x-axis. Find its volume.

$$
\left\{\begin{aligned}
d x \\
\begin{array}{rl}
r & =" y-\text {-value }=\sqrt{x} \\
v_{0} 1 & =\pi r^{2} d x \\
& =\pi(\sqrt{x})^{2} d x \\
& =\pi x d x
\end{array} \\
\text {. }
\end{aligned}\right.
$$

$$
V_{0}\left|=\int_{0}^{4} \pi x d x=\pi \frac{x^{2}}{2}\right|_{0}^{4}=8 \pi
$$

Sometimes this meted is called the "disk method".

四
we can do other shapes:

"Gabriel's horn"

First we need to see what are called "improper integrals", ie, integrating over an asymptote, or where a limit is ∞.
Big ides: "treat ∞ as any ordinary number"
Expels: $\int_{1}^{\infty} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{\infty}=\ln \infty-\ln 1=\infty$

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{\infty}=-\frac{1}{\infty}-\left(-\frac{1}{1}\right)=0+1=1
$$

Back to Gabriel's horn:

$$
\text { Volume }=\int_{1}^{\infty} \pi\left(\frac{1}{x}\right)^{2} d x=\int_{1}^{\infty} \pi \frac{1}{x^{2}} d x=\pi \int_{1}^{\infty} \frac{1}{x^{2}} d x=\pi .
$$

we can also compute the surface area
Technically, we doit know haw to do this, but we an shaw it's infinite

Surface aden

$$
=2 \pi r=\frac{2 \pi}{x}
$$

Thus, the surface area is bigger than

$$
\begin{aligned}
\int_{1}^{\infty} 2 \pi r d x & =\int_{1}^{\infty} \frac{\partial \pi}{x} d x \\
& =\frac{\partial}{\pi} \int_{1}^{\infty} \frac{1}{x} d x=\infty
\end{aligned}
$$

* So, Gabriel's horn has finite volume but infinite surface area!

The following method is sometimes called "volumes by washers"
Example: Consider the region formed by rotating the area between the curves $y=x$ and $y=x^{2}$ from $x=0$ to $x=1$ around the y-axis.

Key ida:

$$
y=x^{2} \Rightarrow x=\sqrt{y}
$$

$$
\int_{0}^{1} \pi\left(\sqrt{y}^{2}-y^{2}\right) d y=\int_{0}^{1} \pi \sqrt{y}^{2} d y \quad-\int_{0}^{1} \pi y^{2} d y
$$

(6)

$$
=\left.\pi \frac{y^{2}}{2}\right|_{0} ^{1}-\left.\pi \frac{y^{3}}{3}\right|_{0} ^{1}=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}
$$

Week of Nov 12-16
we can do the previous pobblem using a different method called shells.

$$
\begin{aligned}
& 2 \pi r=2 \pi x \\
& V_{0 l}=(\text { area })(\text { height })(\text { depth }) \\
&=2 \pi x\left(x-x^{2}\right) d x
\end{aligned}
$$

Vol $=\int_{0}^{1}$ "vol of shell of radius $x^{\prime \prime}$

$$
=\int_{0}^{1} 2 \pi x\left(x-x^{2}\right) d x=\int_{0}^{1} 2 \pi\left(x^{2}-x^{3}\right) d x=\left.2 \pi\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=2 \pi\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{\pi}{6}
$$

