Week of Nov 12-16 (also see pot slides)

Hagia Sophia

Cross section:


rotate about $y$-axis

Find $a$ :

$$
\begin{aligned}
& \cos 70^{\circ}=\frac{50}{a} \\
& \Rightarrow=50 \\
& a=50 \cos 70^{\circ} \approx 17 .
\end{aligned}
$$

So $R=52.5, r=50, a=17$.

$$
\begin{aligned}
V_{1} & =\int_{a}^{R} \pi\left(\sqrt{R^{2}-x^{2}}\right)^{2} d x=\int_{a}^{R} \pi\left(R^{2}-x^{2}\right) d x=\left.\pi\left[R^{2} x-\frac{1}{3} x^{3}\right]\right|_{a} ^{k} \\
& =\pi\left[\left(R^{3}-\frac{1}{3} R^{3}\right)-\left(R^{2} a-\frac{1}{3} a^{3}\right)\right]=\pi\left[\frac{2}{3} R^{3}-R^{2} a+\frac{1}{3} a^{3}\right] \approx \pi(13,135,42)
\end{aligned}
$$

Similarly, $\quad V_{2}=\int_{a}^{r} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x=\ldots=\pi\left[\frac{2}{3} r^{3}-r^{2} a+\frac{1}{3} a^{3}\right] \approx \pi(4356.25)$
So $V=V_{1}-V_{2}=27,581 \mathrm{ft}^{3} \approx 28,000 \mathrm{ft}^{3}$

Concrete weighs $\simeq 110 \mathrm{~b} / \mathrm{Ft}^{3} \Rightarrow$ total weight is $\approx 3,000,000 \mathrm{lss}$.
There are 40 supporting ribs $\Rightarrow \frac{3,000,000}{40}=75,000 \mathrm{ls}$ per buttress.

- Calculate the outward fore at each buttress:


$$
\begin{aligned}
\left|\vec{F}_{H}\right| & =|\vec{F}| \cdot \cos 70^{\circ} \\
& =(75,000)(0.342) \approx 27,0001 \mathrm{bs}
\end{aligned}
$$

Def:- Vertical cross-sections of a dome are called meridians

- Horizontal cross-sections of a dome are called hops.

Compare the force (magnitude i direction) of the dome on a hoop, at various heights


The houpstress is the outward force.

* First panciple of structural architecture: Unless the shell can resist the "hoop stress," the shell will expand along the hoops icrachs will develop along meridians.

Week of Nov. 19-23: No class
Week of Nov. 26-30: (Also see pot slides)
Roman Pantheon


$$
\begin{aligned}
& r=71 \quad \text { Feet } \\
& R=92 \\
& D=16 \\
& E=48 \\
& a=12 \\
& b=64 \\
& c=78
\end{aligned}
$$

Weill use the shell method

(4)

Recall: Vol of a shell:


$$
=\left(b_{\text {are }}\right)(\text { height })\left(\text { thizhners }^{2}\right)
$$

$\hat{i}_{\text {circumference }} \imath_{d x}$

$$
\begin{aligned}
\text { Vol } 1 & =\int_{a}^{b} 2 \pi x\left[\sqrt{R^{2}-x^{2}}-\left(\sqrt{r^{2}-x^{2}}+D\right)\right] d x \\
& =\int_{a}^{b} 2 \pi x \sqrt{R^{2}-x^{2}} d x-\int_{a}^{b} 2 \pi x \sqrt{r^{2}-x^{2}} d x-\int_{a}^{b} 2 \pi x D d x
\end{aligned}
$$

Let $u=R^{2}-x^{2} \Rightarrow d u=-2 x d x$

$$
\begin{aligned}
& =\int_{a}^{b}-\pi \sqrt{u} d u+\int_{a}^{b} \pi \sqrt{u} d u-\int_{a}^{b} 2 \pi D_{x} \\
& =-\left.\frac{2}{3} \pi u^{3 / 2}\right|_{x=a} ^{x=b}+\left.\frac{2}{3} \pi u^{3 / 2}\right|_{x=a} ^{x=b}-\left.\pi D x^{2}\right|_{a} ^{b} \\
& =-\left.\frac{2}{3} \pi\left(R^{2}-x^{2}\right)^{3 / 2}\right|_{a} ^{b}+\left.\frac{2}{3} \pi\left(r^{2}-x^{2}\right)\right|_{a} ^{b}-\pi D\left(b^{2}-a^{2}\right) \\
& =-656,875+984,818-198,694=129,299 \mathrm{ft}^{3}
\end{aligned}
$$

Arc length
Goal: Find the length $f$ a curve $y=f(x)$, from $x=a$ to $x=b$


Think of are length of the limit of the sum of small pieces, as $\Delta S \rightarrow 0$


$$
\operatorname{Arcleryth}=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} \Delta S_{i}=\int_{a}^{b} d s=\int_{a}^{b} \sqrt{(d x)^{2}+(d y)^{2}}=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Example: Find the are length of $y=\sqrt{x^{3}}=x^{3 / 2}$ from $x=0$ to $x=4$

$$
\begin{aligned}
& \int_{0}^{4} \sqrt{1+\left(\frac{d}{d x} x^{3 / 2}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x \\
& =\int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x \quad \text { let } \begin{aligned}
u & =1+\frac{9}{4} x \\
d u & =\frac{9}{4} d x
\end{aligned}
\end{aligned}
$$



$$
L=\sqrt{(d x)^{2}+(d y)^{2}}
$$

$$
=\sqrt{\left[1+\left(\frac{d y}{d x}\right)^{2}\right](d x)^{2}}
$$

$$
=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$


(6)

$$
\begin{aligned}
& =\int_{x=0}^{x=4} \sqrt{u} \cdot \frac{4}{9} d u=\frac{4}{9} \int_{x=0}^{x=4} u^{1 / 2} d u=\frac{4}{9}\left[\frac{2}{3} u^{3 / 2}\right]_{x=0}^{x=4} \\
& =\left.\frac{8}{27}\left(1+\frac{9}{4} x\right)^{3 / 2}\right|_{0} ^{4}=\frac{8}{27} \cdot 10^{3 / 2}-\left.\frac{8}{27}\right|^{3 / 2}=\frac{8}{27}(\sqrt{1000}-1) \approx 9.073
\end{aligned}
$$

Remand: Often, one of these integrals $\int \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ ends us being too complicated (e.g., no dosed form soling, or we haven learned the nuessany method). For these, WolframAlpha is helpful.
Ex: Compute the are length of are full cycle of $\sin x$.

$$
\int_{0}^{2 \pi} \sqrt{1+(\cos x)^{2}} d x \approx 7.640 \quad \text { (Wolfram Alp) }
$$



Application: Shape $f$ an ideal arch.
What is an "ideal arch"?
Ans 1 (unsatisfactory): Satisfies 3 conditions.
(1) The only load on the arch is its weight
(2) The only external support is at its base
(3) Gravitational forces on the arch are balanced perfectly by its reaction to the compression that these forms generate.
Ans 2 (intuition). what is not an ideal arch?
to s wide


Ans 3: "Harrying chain", uside-down.
Imagine a chain coasting of weights stang along (weightless) fishing line.


* Forces must balance if the string is at rest.


If the system is at rest, then we must have:

$$
\left\{\begin{aligned}
& T_{0}+W_{0}=T_{1} \\
& T_{1}+W_{1}=T_{2} \\
& \vdots \\
& T_{n-1}+W_{n-1}=T_{n} \quad \text { which is not fin to solve. }
\end{aligned}\right.
$$

8
As usual, the "Calculus version" of this problem is easier. (Later...)
Let's tarn this problem "upside-darn"


$$
\text { stability } \Rightarrow w_{1}+w_{2}+\ldots+w_{1}=V_{1}+V_{2}
$$

Safe Theorem (Heyman, 1966, Cambatye Engineering): "As long as there is any polygonal path mside the arch such that the forces balance, as in the previous page, then the arch is stable."
It turns ont that the shape of an ideal arch, or hanging chain, is a hyperbolic cosine function, $\cosh (k x)=\frac{e^{k x}+e^{-k x}}{2}$

Le's take a brief detour and explore this function.

Def: Hyporboliz cosine
Hyperbolic sine



Polynomial approximations of functions (ear of Calk II)
Motivating example: lets approximate $f(x)=e^{x}$ at $x=0$

- $0^{\text {th }}$ order approximation: $T_{0}(x)=1$
- $1^{\text {st }}$ order approximation: $T_{1}(x)=1+x$
- $2^{n d}$ order approximation: $T_{2}(x)=1+x+\frac{1}{2} x^{2}$

Hor to find this: let $T_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$ :

$$
\begin{aligned}
a_{0} & =T_{2}(0)=e^{0}=1 \\
a_{1} & =T_{2}^{\prime}(0)=\left.\frac{d}{d x}\left(e^{x}\right)\right|_{x=0}=1 \\
2 a_{2} & =T_{2}^{\prime \prime}(0)=\left.\frac{d^{2}}{d x^{2}}\left(e^{x}\right)\right|_{x=0}=1
\end{aligned}
$$



- $n^{+4}$ order approximation: $T_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots+a_{n} x^{n}$.

$$
\begin{aligned}
& 6 a_{3}=T_{2}^{\prime \prime \prime}(0)=\frac{d^{3}}{d x^{3}}\left(e^{x}\right)=1 \\
& 24 a_{4}=T_{2}^{\prime \prime \prime}(0)=\frac{d^{4}}{d x^{4}}\left(e^{x}\right)=1, \ldots
\end{aligned}
$$

- Taking the limit of $T_{n}(x)$ as $n \rightarrow \infty$ :

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!}+\frac{x^{8}}{8!}+\cdots
$$

(10) Week of Dec 3-7

Note: $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!}+\frac{x^{8}}{8!}+\ldots$

$$
\begin{aligned}
& e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!}+\frac{x^{6}}{6!}-\frac{x^{7}}{7!}+\frac{x^{8}}{8!}+\cdots \\
& \frac{e^{x}+e^{-x}}{2}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+\ldots=\cosh x \\
& \frac{e^{x}-e^{-x}}{2}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots \quad=\sinh x
\end{aligned}
$$

Remark: $\cdot e^{x}=\cosh x+\sinh x$

$$
\begin{gathered}
\cdot \frac{d}{d x}(\sinh x)=\cosh x, \quad \frac{d}{d x}(\cosh x)=\sinh x \\
e^{i x}=1+i x-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}-\frac{i x^{7}}{7!}+\frac{x^{8}}{8!}+/ \ldots \\
e^{-i x}=1-i x-\frac{x^{2}}{2!}+\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}+\frac{i x^{7}}{7!}+\frac{x^{8}}{8!} \\
\frac{e^{i x}+e^{-i x}}{2}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\frac{x^{8}}{8!}+1-\cdots=\cos x \\
\frac{e^{i x}-e^{-i x}}{2 i}=x \quad-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \quad+\frac{x^{7}}{7!}+\cdots=\sin x .
\end{gathered}
$$

Remarks: $\cdot e^{i x}=\cos x+i \sin x$

$$
\cdot e^{i \pi}=\cos \pi+i \sin \pi
$$

$$
=-1+0
$$

$$
\Rightarrow e^{i \pi}=-1 \quad \prod_{0} \prod_{0}
$$



Andy, is of an idea arch


Approach: Since the arch is at rest, we will balance the horizontal vertical forces at each symant.

$$
\begin{array}{lc}
C(x) / c_{\partial(x)} c(x) \sin \theta(x) & c(x+\Delta x) / \| c(x+\Delta x) \sin \theta(x+\Delta x) \\
c(x) \cos \theta(x) & C(x+\Delta x) \cos \theta(x+\Delta x)
\end{array}
$$

(12)

Balance vertical forces

$$
\begin{aligned}
& C(x) \sin \theta(x) \approx C(x+\Delta x) \sin \theta(x+\Delta x)+w \cdot \Delta S \\
& \Rightarrow C(x+\Delta x) \sin \theta(x+\Delta x)-C(x) \sin \theta(x) \approx-w \cdot \Delta S=-w \sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} d x \\
& \Rightarrow \lim _{\Delta x \rightarrow 0}\left(\frac{C(x+\Delta x) \sin \theta(x+\Delta x)-C(x) \sin \theta(x)}{\Delta x}=-w \sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} \Delta x\right) \\
& \Rightarrow \int_{-b}^{x}\left(\frac{d}{d x} C(x) \sin \theta(x)=-w \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x\right) \\
& \Rightarrow C(x) \sin \theta(x)=-w \int_{-b}^{x} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x+C
\end{aligned}
$$

Balance horizontal forcer

$$
\begin{aligned}
& \lim _{\Delta x \rightarrow 0}\left(\frac{C(x+\Delta x) \cos \theta(x+\Delta x)-C(x) \cos \theta(x)}{\Delta x} \approx \frac{0}{\Delta x}\right) \\
& \int_{-b}^{x}\left(\frac{d}{d x} C(x) \cos \theta(x)=0\right)
\end{aligned}
$$

$C(x) \cos \theta(x)=C_{0} \quad$ Note: Compression at top of arch is

$$
=C(0) \underbrace{\cos \theta(0)}_{=1}=C_{0}
$$

Now, consider $\tan \theta(x)$; two ways to calculate
(1)


$$
\tan \theta(x)=\frac{d y}{d x}
$$

(2) $\frac{(x)}{(x-x)} \quad \frac{C(x) \sin \theta(x)}{C(x) \cos \theta(x)}$

$$
\frac{d}{d x}\left(\frac{d y}{d x}=\tan \theta(x)=\frac{C(x) \sin \theta(x)}{C(x) \cos \theta(x)}=\frac{-w}{c_{0}} \int_{-6}^{x} \sqrt{1+\left(y^{\prime}(t)\right)^{2}} d t+C\right)^{(13)}
$$

$$
\frac{d^{2} y}{d x^{2}}=-\frac{w}{c_{0}} \sqrt{1+\left(y^{\prime}(x)\right)^{2}}
$$

This is a differential equation: an eon that implicitly defines an enteron function, $y(x)$.

All that's left: verify that $y(x)=\cosh x=\frac{e^{x}+e^{-x}}{2}$ satisfies this eq'n. (In geneal, solving a diff on is difficult; see Math Z080).
Example of diff. gins:

- $y^{\prime}=y \quad$ "what function is its own derivative?" (Ans: $y(x)=C e^{x}$ )
" "The rate of change of $f(t)$ is proportional to $f(t)$ itself $f$ ": $y^{\prime}=k y$. Ans, $y(x)=C e^{k t}$

