1. Let S be the following set of 7 "binary squares":

$$
S=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array},, \begin{array}{|ll}
0 & 1 \\
1 & 0
\end{array}\right], \begin{array}{|ll}
1 & 0 \\
0 & 1
\end{array}, \begin{array}{|ll}
1 & 1 \\
0 & 0
\end{array},\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array},, \begin{array}{|ll}
0 & 0 \\
1 & 1
\end{array}, \begin{array}{|ll}
1 & 0 \\
1 & 0
\end{array}\right\}
$$

For the following actions, draw an action diagram and find the stabilizer of each element:
(a) The action of $G=V_{4}=\langle v, h\rangle$ on S, where $\phi(v)$ reflects each square vertically, and $\phi(h)$ reflects each square horizontally.
(b) The action of $G=C_{4}=\langle r\rangle$ on S, where $\phi(r)$ rotates each square 90° clockwise.
2. Let $G=S_{4}$ act on itself by conjugation via the homomorphism

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } x \mapsto g^{-1} x g .
$$

(a) How many orbits are there? Describe them as specifically as you can.
(b) Find the orbit and the stabilizer of the following elements:
i. $i d$
ii. (1 2)
iii. (1 2 3)
iv. (1234)
v. (12) (3 4).
3. Prove that if $H \leq S_{n}$ contains an odd permutation, then exactly half of its permutations are odd.
4. Suppose $H, K \leq G$ both have finite index.
(a) Show that there is some $N \unlhd G$ with $N \leq H$ such that $[G: N]<\infty$.
(b) Show that $[G: H \cap K] \leq[G: H][G: K]$.
5. Let G be a finite group acting on a set S.
(a) Prove that if G has no subgroup of index 2 , then any subgroup of index 3 is normal.
(b) Prove that if $[G: H]=p$, the smallest prime dividing $|G|$, then $H \unlhd G$.
6. Given a left action, show that $\operatorname{Stab}_{G}(x s)=x \operatorname{Stab}_{G}(s) x^{-1}$ for all $x \in G, s \in S$.
7. Permutation groups G_{1} and G_{2} acting on sets S_{1} and S_{2} are called permutation isomorphic if there exists an isomorphism $\theta: G_{1} \rightarrow G_{2}$ and a bijection $\phi: S_{1} \rightarrow S_{2}$ such that $(\theta x)(\phi s)=\phi(x s)$ for all $x \in G_{1}$ and $s \in S_{1}$. In other words, the following diagram commutes:

Show that the following two actions of G on itself are permutation isomorphic:
(i) the action of $x \in G$ is left multiplication by x;
(ii) the action of $x \in G$ is right muliplication by x^{-1}.

