- 1. If |G| = 8, then by the first Sylow theorem, G must contain a subgroup H of order 4.
 - (a) If all subgroups of G of order 4 are isomorphic to V_4 , then what group must G be? Completely justify your answer.
 - (b) Otherwise, G has a subgroup $H \cong C_4$, and so it has a Cayley diagram like one of the following:

Classify all groups of order 8 up to isomorphism by finding all possibilities for finishing the Cayley diagram. Fully justify the completeness of your list.

- 2. Show that there are no simple groups of the following order:
 - (i) p^n , (n > 1), (ii) pq, (p, q prime) (iii) 56, (iv) 108.
- 3. Let P be a Sylow p-subgroup of G.
 - (a) Show that P has subgroups $1 = G_0 \leq G_1 \leq \cdots \leq P_n = P$ such that $[P_i : P_{i-1}] = p$ for all $1 \leq i \leq n$.
 - (b) Show that $N_G(N_G(P)) = N_G(P)$.
 - (c) If $P \leq H \leq G$, show that G = NH, where $N = N_G(P)$.
- 4. Let G be a group of order 90 with no normal Sylow 5-subgroups.
 - (a) Show that there is a nontrivial homomorphism $\varphi: G \to S_6$.
 - (b) If $\varphi(G) \subseteq A_6$, show that φ is not injective.
 - (c) Show that G is not simple.
- 5. Let G be a simple group of order 168. Show that G is isomorphic to a subgroup of A_8 , the alternating group.
- 6. Let P be a Sylow p-subgroup of G. Show that if $x, y \in C_G(P)$ are conjugate in G, then they are conjugate in $N_G(P)$.