- 1. For each of the following statements, prove or give a counterexample.
 - (a) Let $f: G \to H$ be an epimorphism. For any two homomorphisms $g_1, g_2: H \to K$, the equality $g_1 \circ f = g_2 \circ f$ implies that $g_1 = g_2$.
 - (b) Let $f: G \to H$ be a monomorphism. For any two homomorphisms $g_1, g_2: H \to K$, the equality $g_1 \circ f = g_2 \circ f$ implies that $g_1 = g_2$.
 - (c) Let $g: H \to K$ be an epimorphism. For any two homomorphisms $f_1, f_2: G \to H$, the equality $g \circ f_1 = g \circ f_2$ implies that $f_1 = f_2$.
 - (d) Let $g: H \to K$ be a monomorphism. For any two homomorphisms $f_1, f_2: G \to H$, the equality $g \circ f_1 = g \circ f_2$ implies that $f_1 = f_2$.
- 2. If (U, ε) is a universal pair for a group G and $h \in \operatorname{Aut}(U)$, show that $(U, h\varepsilon)$ is also universal for G. Conversely, if (U, ε_1) is universal for G, show that $\varepsilon_1 = h\varepsilon$ for some $h \in \operatorname{Aut}(U)$.
- 3. For each of the following groups G:
 - (i) D_3 , (ii) D_4 , (iii) Q_8 , (iv) A_4 , (v) S_4 ,

carry out the steps below. Feel free to use Google for Part (a).

- (a) Draw the subgroup lattice of G and circle each normal subgroup.
- (b) Determine the commutator subgroup G' and double-circle this on the lattice.
- (c) Sketch the subgroup lattice of G/G' and find its isomorphism type.
- (d) Find the derived series for G.
- 4. Prove the lemma from class:
 - (a) If $G' \leq H \leq G$ show that $H \lhd G$.
 - (b) Show that if $K \lhd G$, then $K' \lhd G$.
 - (c) Suppose $f: G \to H$ is an epimorphism, with ker f = K. Show that H is abelian if and only if $G' \leq K$.
- 5. Prove that G is solvable in the following cases, where p and q are distinct primes:
 - (a) $|G| = p^n$,
 - (b) $|G| = p^2 q$.
- 6. Let G be a finite group and $N \leq G$.
 - (a) If the order of $xN \in G/N$ is a power of p, show that there exists $y \in G$ such that |y| is a power of p and yN = xN.
 - (b) If G/N is abelian and P is a Sylow p-subgroup of G, prove that PN/N is the unique Sylow p-subgroup of G/N.
 - (c) Show by example how Part (b) can fail if G/N is non-abelian.