1. Prove that if a coproduct $\left(S,\left\{\iota_{\alpha}\right\}\right)$ exists for a family $\left\{G_{\alpha} \mid \alpha \in A\right\}$ of groups, it is unique up to isomorphism and each $\iota_{\alpha}: G_{\alpha} \rightarrow S$ is injective.
2. Consider a category where each object X_{i} contains an identity element e_{i} (e.g., groups, abelian groups, vector spaces, etc.). Consider the Cartesian product $X_{1} \times X_{2}$ of two objects together with the maps

$$
\begin{array}{ll}
\iota_{1}: X_{1} \rightarrow X_{1} \times X_{2}, & \iota_{1}(x)=\left(x, e_{2}\right) \\
\iota_{2}: X_{2} \rightarrow X_{1} \times X_{2}, & \iota_{2}(x)=\left(e_{1}, x\right) .
\end{array}
$$

(a) Prove or disprove: this is a coproduct for $\left\{X_{1}, X_{2}\right\}$ in the category of abelian groups.
(b) Prove or disprove: this is a coproduct for $\left\{X_{1}, X_{2}\right\}$ in the category of groups.
3. Let $\left\{A_{\alpha} \mid \alpha \in I\right\}$ be a collection of abelian groups, written additively.
(a) Prove that the set of finite sums

$$
\sum_{\alpha \in I} A_{\alpha}:=\left\{x_{\alpha_{1}}+\cdots+x_{\alpha_{k}} \mid x_{\alpha_{i}} \in A_{\alpha_{i}}\right\}
$$

is a coproduct in the category of abelian groups, where ι_{α} are the canonical inclusion maps.
(b) Show by example how the direct product $\prod_{\alpha \in I} A_{\alpha}$ fails to be a coproduct in the category of abelian groups.
4. Given groups G and H, let S be the disjoint union of their nonidentity elements. The free product, denoted $G * H$, is the set of all words of the form

$$
G * H=\left\{s_{1} s_{2} \cdots s_{k} \mid s_{i} \in S\right\},
$$

where no two consecutive terms both lie in G or in H. You may assume that $G * H$ is a group where the operation is concatenation, and reduction by iterative removal of identity elements $g g^{-1}$ and $h h^{-1}$ that arise.
(a) Prove that $G * H$ is a coproduct of $\{G, H\}$ in the category of groups.
(b) Describe the group $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. What do the elements look like? Write out a group presentation (no proof needed) and construct an isomorphism to a familiar group.
5. (a) Show that if $G=G_{1} G_{2}$ is an internal direct product, then $G / G_{i} \cong G_{j}$ for $i \neq j$.
(b) Show that $Z\left(\prod_{\alpha} G_{\alpha}\right)=\prod_{\alpha} Z\left(G_{\alpha}\right)$.
(c) Show that $\left(G_{1} \times \cdots \times G_{n}\right)^{\prime}=G_{1}^{\prime} \times \cdots \times G_{n}^{\prime}$.
(d) Under what circumstances is $G_{1} \times \cdots \times G_{n}$ solvable?

