1. Let \mathfrak{C} be a category.
(a) If $f \in \operatorname{Hom}_{\mathfrak{C}}(A, B)$ is an isomorphism, show that there is at most one $g \in \operatorname{Hom}_{\mathfrak{C}}(B, A)$ such that $g f=1_{A}$ and $f g=1_{B}$.
(b) Prove that any two initial (universal) objects in \mathfrak{C} are equivalent.
(c) Prove that any two terminal (couniversal) objects in \mathfrak{C} are equivalent.
2. Let $\left\{A_{i} \mid i \in I\right\}$ be a family of objects in a category \mathfrak{C} where products and coproducts always exist. In class, we defined a new category \mathfrak{D} where the objects involved maps of the form $B \xrightarrow{f_{i}} A_{i}$, and morphisms were defined so that the product of $\left\{A_{i} \mid i \in I\right\}$ arose as a terminal object. Carry out an analogous construction of a category, by carefully defining its objects and morphisms, so that the coproduct of $\left\{A_{i} \mid i \in I\right\}$ arises as an initial object. Prove all of your claims.
3. Let A_{1}, A_{2}, A be objects in a category \mathfrak{C}, and $f_{i} \in \operatorname{Hom}\left(A, A_{i}\right)$ for $i=1,2$. Suppose that

and

are pushouts for $\left(A, A_{1}, A_{2}, f_{1}, f_{2}\right)$. Prove that B and B^{\prime} are equivalent.
4. A pair of homomorphisms $K \xrightarrow{f} G \xrightarrow{g} H$ is exact at G if $\operatorname{im}(f)=\operatorname{ker} g$. A short exact sequence is a sequence $1 \rightarrow K \xrightarrow{f} G \xrightarrow{g} H \rightarrow 1$ that is exact at K, G, and H.
(a) Show that if $K \triangleleft G, f: K \rightarrow G$ is the inclusion map and $g: G \rightarrow G / K$ is the canonical quotient map, then $1 \rightarrow K \xrightarrow{f} G \xrightarrow{g} G / K \rightarrow 1$ is a short exact sequence.
(b) Show that $1 \rightarrow K \xrightarrow{f} G \xrightarrow{g} H \rightarrow 1$ is short exact if and only if f is $1-1, g$ is onto, and $\operatorname{im}(f)=\operatorname{ker} g$. Conclude that then K is isomorphic with a normal subgroup of G and that $G / f(K) \cong H$.
(c) Suppose $1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1$ is a short exact sequence. Show that G is solvable if and only if both K and H are solvable.
(d) Give an example of a short exact sequence $1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1$ for which K and H are nilpotent but G is not.
5. If G is a group and $x \in G$, define the inner automorphism f_{x} by setting $f_{x}(y)=x y x^{-1}$ for all $y \in G$. Write $I(G)$ for the set of all inner automorphisms of G.
(a) Show that $I(G) \leq \operatorname{Aut}(G)$.
(b) Show that $I(G) \cong G / Z(G)$.
(c) If $I(G)$ is abelian show that $G^{\prime} \leq Z(G)$. Conclude that G is nilpotent.
(d) Compute $\operatorname{Aut}\left(S_{3}\right)$.
