- 1. Let \mathfrak{C} be a category.
 - (a) If $f \in \operatorname{Hom}_{\mathfrak{C}}(A, B)$ is an isomorphism, show that there is at most one $g \in \operatorname{Hom}_{\mathfrak{C}}(B, A)$ such that $gf = 1_A$ and $fg = 1_B$.
 - (b) Prove that any two initial (universal) objects in \mathfrak{C} are equivalent.
 - (c) Prove that any two terminal (couniversal) objects in \mathfrak{C} are equivalent.
- 2. Let $\{A_i \mid i \in I\}$ be a family of objects in a category \mathfrak{C} where products and coproducts always exist. In class, we defined a new category \mathfrak{D} where the objects involved maps of the form $B \xrightarrow{f_i} A_i$, and morphisms were defined so that the product of $\{A_i \mid i \in I\}$ arose as a terminal object. Carry out an analogous construction of a category, by carefully defining its objects and morphisms, so that the coproduct of $\{A_i \mid i \in I\}$ arises as an initial object. Prove all of your claims.
- 3. Let A_1, A_2, A be objects in a category \mathfrak{C} , and $f_i \in \operatorname{Hom}(A, A_i)$ for i = 1, 2. Suppose that

are pushouts for (A, A_1, A_2, f_1, f_2) . Prove that B and B' are equivalent.

- 4. A pair of homomorphisms $K \xrightarrow{f} G \xrightarrow{g} H$ is *exact* at G if im(f) = ker g. A *short exact* sequence is a sequence $1 \to K \xrightarrow{f} G \xrightarrow{g} H \to 1$ that is exact at K, G, and H.
 - (a) Show that if $K \triangleleft G$, $f: K \rightarrow G$ is the inclusion map and $g: G \rightarrow G/K$ is the canonical quotient map, then $1 \rightarrow K \xrightarrow{f} G \xrightarrow{g} G/K \rightarrow 1$ is a short exact sequence.
 - (b) Show that $1 \to K \xrightarrow{f} G \xrightarrow{g} H \to 1$ is short exact if and only if f is 1–1, g is onto, and $\operatorname{im}(f) = \ker g$. Conclude that then K is isomorphic with a normal subgroup of G and that $G/f(K) \cong H$.
 - (c) Suppose $1 \to K \to G \to H \to 1$ is a short exact sequence. Show that G is solvable if and only if both K and H are solvable.
 - (d) Give an example of a short exact sequence $1 \to K \to G \to H \to 1$ for which K and H are nilpotent but G is not.
- 5. If G is a group and $x \in G$, define the *inner automorphism* f_x by setting $f_x(y) = xyx^{-1}$ for all $y \in G$. Write I(G) for the set of all inner automorphisms of G.
 - (a) Show that $I(G) \leq \operatorname{Aut}(G)$.
 - (b) Show that $I(G) \cong G/Z(G)$.
 - (c) If I(G) is abelian show that $G' \leq Z(G)$. Conclude that G is nilpotent.
 - (d) Compute $\operatorname{Aut}(S_3)$.