- 1. Prove the lemma from class: Let N, H, K be normal subgroups of G, with $N \leq H$ and $N \leq K$. If N contains [G, H] and [G, K], then it also contains [G, HK].
- 2. Let G be a nilpotent group.
 - (a) Show that every subgroup of G is nilpotent.
 - (b) Show that every homomorphic image of G is nilpotent.
 - (c) Show that nontrivial normal subgroups of G intersect the center nontrivially.
- 3. Let G be a finite group in which every maximal subgroup is normal.
 - (a) Prove that G is nilpotent. [*Hint*: If not, then take a non-normal Sylow subgroup $P \leq G$, and choose a maximal $M \leq G$ containing $N_G(P)$.]
 - (b) Show that every maximal subgroup of G has prime index.
- 4. Let G be a group with $X \subseteq G$, and let A be the normal subgroup generated by X, i.e.,

$$A = \bigcap \{ N \lhd G \mid X \subseteq N \} .$$

Let $Y = \{gxg^{-1} \mid x \in X, g \in G\}$. Show that $A = \langle Y \rangle$.

- 5. If H and K are subgroup of G, with $H \triangleleft G$, $H \cap K = 1$, and HK = G, then G is called a semidirect product (or split extension) of H by K.
 - (a) If $\sigma = (12) \in S_n$, $n \ge 2$, show that S_n is a semidirect product of A_n by $\langle \sigma \rangle$.
 - (b) Show that the dihedral group D_n is a semidirect product of two of its non-trivial subgroups.
 - (c) Show that the quaternion group cannot be expressed as a semidirect product of two non-trivial subgroups.
- 6. Suppose H and K are groups and $\phi: K \to \operatorname{Aut}(H)$ is a homomorphism. Let G be the Cartesian product $H \times K$ as a set, but with binary operation $(x, y)(u, v) = (x \cdot \phi(y)u, yv)$.
 - (a) Show that G is a group; denote it by $G = H \rtimes_{\phi} K$, and call it the *external semidirect* product of H by K relative to ϕ .
 - (b) Show that $H_1 = \{(x, 1) : x \in H\} \triangleleft G$, $K_1 = \{(1, y) : y \in K\} \leq G$, and that G is the semidirect product of H_1 by K_1 .