- 1. Let $S = \{a\}$.
 - (a) Verify that $(\mathbb{N}, +)$ is a free semigroup on S, where $\mathbb{N} = \{1, 2, 3, \dots\}$.
 - (b) Show that the free group on S is an infinite cyclic group.
- 2. Let (F, ϕ) be a free group on a set S.
 - (a) Show that $F = \langle \phi(S) \rangle$.
 - (b) Prove that every nonidentity element has infinite order
 - (c) If $|S| \geq 2$, show that F is not abelian.
 - (d) For any $T \subseteq S$, show that there exists a normal subgroup $N \triangleleft F$ such that $(F/N, \pi \phi|_T)$ is a free group on T.
 - (e) Show that $(\langle \phi(T) \rangle, \phi|_T)$ is a free group on T.
- 3. Let F be a free group and N be the subgroup generated by $\{x^n \mid x \in F, n \text{ a fixed integer}\}$. Show that $N \triangleleft F$.
- 4. Let F be a free object on S, and F' a free object on S' in a concrete category \mathfrak{C} . Prove that if |S| = |S'|, then F and F' are equivalent.
- 5. For a positive integer n, let **Nil** be the category of nilpotent groups, and let $\mathbf{Nil}_{\leq n}$ be the category of nilpotent groups of class at most n.
 - (a) Show what there cannot exist a nilpotent group N generated by two elements with the property that every nilpotent group generated by two elements is a homomorphic image of N.
 - (b) Prove or disprove that free objects always exist in Nil.
 - (c) Prove or disprove that free objects always exist in $Nil_{\leq n}$.