- 1. Let F be a free object on a set S, with $\phi: S \to F$, in a concrete category \mathfrak{C} . Construct a new category \mathfrak{D} , by carefully defining $Ob(\mathfrak{D})$ and $Hom(\mathfrak{D})$, so that $\phi: S \to F$ arises as either an initial (universal) object or as a terminal (couniversal) object. Justify your claims.
- 2. Prove what group is described by each presentation.
 - (a) $G = \langle a, b \mid a^2 = b^2 = (ab)^2 = 1 \rangle.$ (b) $G = \langle a, b \mid a^4 = 1, a^2 = b^2, ab = ba^3 \rangle.$ (c) $G = \langle a, b \mid a^2 = 1, b^3 = 1, ab = ba \rangle.$ (d) $G = \langle a, b \mid a^4 = b^3 = 1, ab = ba^3 \rangle.$ (e) $G = \langle a, b, c \mid a^2 = b^2 = c^2 = (ab)^3 = (ac)^2 = (bc)^3 = 1 \rangle.$
- 3. Consider the Cartesian product $H = \mathbb{Z}_2 \times \mathbb{Z}_n$ (as a *set*) with binary operation defined as

$$(\overline{i},\overline{j})\cdot(\overline{k},\overline{\ell}) = (\overline{i}+\overline{k},(-1)^k\overline{j}+\overline{\ell}).$$

- (a) Show that H is a group under this operation, and determine its order.
- (b) Let $G = \langle a, b \mid a^n = 1, b^2 = 1, abab^{-1} = 1 \rangle$. Show that $|G| \leq 2n$.
- (c) Show that $H \cong G$.
- 4. Define the generalized quaternion group Q_n by the presentation

$$Q_n = \langle a, b \mid a^{2n} = 1, b^2 = a^n, ab = ba^{-1} \rangle, \quad \text{for } n \ge 1.$$

- (a) Show that $|Q_n| = 4n$.
- (b) Show that Q_1 is cyclic and Q_2 is the quaternion group.
- (c) Show that Q_3 is not isomorphic with either D_6 or A_4 .
- (d) Find the nilpotency class of Q_{2^n} .
- 5. Let S be a set. The group with presentation $\langle S | R \rangle$ where $R = \{[s,t] | s,t \in S\}$ is called the *free abelian* group on S; denote it by A_S and let $\phi: S \to A_S$ be the inclusion.
 - (a) Prove that A_S has the following universal property: for any abelian group G and function $\theta: S \to G$, there is a unique homomorphism $f: A_S \to G$ such that $f\phi = \theta$.
 - (b) Deduce that if A is a free abelian group on a set of cardinality n, then

$$A \cong \mathbb{Z} \times \dots \times \mathbb{Z} \qquad (n \text{ factors}).$$