1. Let I and J be ideals of a ring R.
(a) Prove that $I+J, I \cap J$, and $I J$ are ideals of R.
(b) If R is commutative, then the set $(I: J):=\{r \in R \mid r J \subset I\}$ is called the ideal quotient or colon ideal of I and J. Show that $(I: J)$ is an ideal of R.
(c) Consider the ideals $I=4 \mathbb{Z}$ and $J=6 \mathbb{Z}$ of the ring $R=\mathbb{Z}$. Compute $I+J, I \cap J$, $I J,(I: J)$, and $(J: I)$.
(d) Repeat Part (c) for the ideals $I=m \mathbb{Z}$ and $J=n \mathbb{Z}$ of $R=\mathbb{Z}$.
2. Let $f: R \rightarrow S$ be a ring homomorphism between commutative rings.
(a) If f is surjective and I is an ideal of R, show that $f(I)$ is an ideal of S.
(b) Show that Part (a) is not true in general when f is not surjective.
(c) Show that if f is surjective and R is a field, then S is a field as well.
3. If F is a field, show that the ring $M_{n}(F)$ of $n \times n$ matrices over F is simple.
4. Let p be a fixed prime number, and consider the ring

$$
R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z},(a, b)=1, p \nmid b\right\}
$$

with the usual operations of addition and multiplication of rational numbers.
(a) Determine the group of units of R.
(b) Prove that the principal ideal $(p)=p R$ is a maximal ideal of R, and in fact, the only maximal ideal of R.
5. An element a of a ring R is called nilpotent if $a^{n}=0$ for some positive integer n.
(a) Show that the set of nilpotent elements in a commutative ring R forms an ideal.
(b) If $u \in R$ is a unit and $a \in R$ nilpotent, show that $u+a$ is a unit.
(c) Find $U(R)$ if $R=\mathbb{Z}_{p^{k}}[x]$, where p is prime and $k \geq 1$. Prove all of your claims.

