Unless otherwise specified, assume that R is a commutative ring with 1 and F is a field.

- 1. For each of the following ideals I of $\mathbb{Z}[x]$, determine whether they are principal, and then find $I \cap \mathbb{Z}$ and $\mathbb{Z}[x]/I$, up to isomorphism.
 - (a) $I = (x^2 + 1, x^2 + x + 3),$
 - (b) $I = (2, x^2 + x + 1).$
- 2. Fix $a \in \mathbb{Z}$ and let $\phi_a : \mathbb{Z}[x] \to \mathbb{Z}$ be the evaluation map, $\phi_a(f(x)) = f(a)$.
 - (a) If $I = (3, x^2 + 1)$ in $\mathbb{Z}[x]$, show that $\phi_a(I) = \mathbb{Z}$.
 - (b) Show by example how Part (a) can fail if 3 is replaced with a different odd prime p.
- 3. (a) Show that an ideal I = (f) of F[x] is maximal if and only if f is irreducible.
 - (b) Show by example how Part (a) can fail in R[x], where R is not a field.
 - (c) Consider the ideal $I = (x_1 a_1, \dots, x_n a_n)$ in $R[x_1, \dots, x_n]$, for distinct $a_1, \dots, a_n \in R$. Formulate and prove necessary and sufficient conditions on R that will ensure that I is a maximal ideal.
- 4. For $f(x) \in R[x]$, substituting $a \in R$ for x determines a polynomial function $f: R \to R$, where $a \mapsto f(a)$.
 - (a) If R is an infinite integral domain, show that the mapping $f(x) \mapsto f$ assign to each polynomial in R[x] to its corresponding polynomial function is 1–1.
 - (b) If R is finite, show that there must exist distinct polynomials f(x) and g(x) in R[x] with identical associated functions f and g, i.e., f(a) = g(a) for all $a \in R$.
- 5. Let \mathbb{F}_q be the finite field of order $q = p^n$.
 - (a) Show that every function $f: \mathbb{F}_q \to \mathbb{F}_q$ can be written uniquely as a polynomial in the quotient $\mathbb{F}_q[x]/I$, where $I = (x^q x)$. How many such functions are there?
 - (b) Generalize Part (a) to multivariate functions $f \colon \mathbb{F}_q^n \to \mathbb{F}_q$.
 - (c) A Boolean network is an n-tuple (f_1, \ldots, f_n) of functions $f_i \colon \mathbb{F}_2^n \to \mathbb{F}_2$. How many 6-node Boolean networks are there? Express your answer in scientific notation.