Unless otherwise specified, assume that R is a commutative ring with 1 and F is a field.

1. For each of the following ideals I of $\mathbb{Z}[x]$, determine whether they are principal, and then find $I \cap \mathbb{Z}$ and $\mathbb{Z}[x] / I$, up to isomorphism.
(a) $I=\left(x^{2}+1, x^{2}+x+3\right)$,
(b) $I=\left(2, x^{2}+x+1\right)$.
2. Fix $a \in \mathbb{Z}$ and let $\phi_{a}: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ be the evaluation map, $\phi_{a}(f(x))=f(a)$.
(a) If $I=\left(3, x^{2}+1\right)$ in $\mathbb{Z}[x]$, show that $\phi_{a}(I)=\mathbb{Z}$.
(b) Show by example how Part (a) can fail if 3 is replaced with a different odd prime p.
3. (a) Show that an ideal $I=(f)$ of $F[x]$ is maximal if and only if f is irreducible.
(b) Show by example how Part (a) can fail in $R[x]$, where R is not a field.
(c) Consider the ideal $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ in $R\left[x_{1}, \ldots, x_{n}\right]$, for distinct $a_{1}, \ldots, a_{n} \in$ R. Formulate and prove necessary and sufficient conditions on R that will ensure that I is a maximal ideal.
4. For $f(x) \in R[x]$, substituting $a \in R$ for x determines a polynomial function $f: R \rightarrow R$, where $a \mapsto f(a)$.
(a) If R is an infinite integral domain, show that the mapping $f(x) \mapsto f$ assiging to each polynomial in $R[x]$ to its corresponding polynomial function is $1-1$.
(b) If R is finite, show that there must exist distinct polynomials $f(x)$ and $g(x)$ in $R[x]$ with identical associated functions f and g, i.e., $f(a)=g(a)$ for all $a \in R$.
5. Let \mathbb{F}_{q} be the finite field of order $q=p^{n}$.
(a) Show that every function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be written uniquely as a polynomial in the quotient $\mathbb{F}_{q}[x] / I$, where $I=\left(x^{q}-x\right)$. How many such functions are there?
(b) Generalize Part (a) to multivariate functions $f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$.
(c) A Boolean network is an n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ of functions $f_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$. How many 6 -node Boolean networks are there? Express your answer in scientific notation.
