Unless otherwise specified, assume that R is a commutative ring with 1 .

1. For an ideal I of $R[x]$ and $m \in \mathbb{N}$, let $I(m)$ denote the set of leading coefficients of degree- m polynomomials in I, together with 0 .
(a) Show that $I(m)$ is an ideal in R.
(b) Show that $I(m) \subseteq I(m+1)$ for all m.
(c) If J is an ideal with $I \subseteq J$, show that $I(m) \subseteq J(m)$ for all m.
2. Consider the following rings R_{i}, for $i=1, \ldots, 6$, which are additionally \mathbb{C}-vector spaces:

$$
\begin{aligned}
& R_{1}=\mathbb{C}[x] /\left(x^{3}-1\right) \\
& R_{2}=\mathbb{C} \times \mathbb{C} \times \mathbb{C} \\
& R_{3}=\text { the ring of upper triangular } 2 \times 2 \text { matrices over } \mathbb{C} \\
& R_{4}=\mathbb{C}[x] /(x-1) \times \mathbb{C}[x] /(x+i) \times \mathbb{C}[x] /(x-i) \\
& R_{5}=\mathbb{C}[x] /\left(x^{2}+1\right) \times \mathbb{C}[x] /(x-1) \\
& R_{6}=\mathbb{C}[x] /(x+1)^{2} \times \mathbb{C}[x] /(x-1) .
\end{aligned}
$$

(a) Compute the dimension of each R_{i} as a \mathbb{C}-vector space by giving an explicit basis.
(b) Partition the rings R_{1}, \ldots, R_{6} into isomorphism classes.
3. (a) Solve the congruences

$$
x \equiv 1 \quad(\bmod 8), \quad x \equiv 3 \quad(\bmod 7), \quad x \equiv 9 \quad(\bmod 11)
$$

simultaneously for x in the ring \mathbb{Z} of integers.
(b) Solve the congruences

$$
x \equiv i \quad(\bmod i+1), \quad x \equiv 1 \quad(\bmod 2-i), \quad x \equiv 1+i \quad(\bmod 3+4 i)
$$

simultaneously for x in the ring R_{-1} of Gaussian integers.
(c) Solve the congruences
$f(x) \equiv 1 \quad(\bmod x-1), \quad f(x) \equiv x \quad\left(\bmod x^{2}+1\right), \quad f(x) \equiv x^{3} \quad(\bmod x+1)$ simultaneously for $f(x)$ in $F[x]$, where F is a field in which $1+1 \neq 0$.
4. An element $e \in R$ is called an idempotent if $e^{2}=e$, and two nonzero idempotents e_{1}, e_{2} are called an orthogonal pair if $e_{1}+e_{2}=1$ and $e_{1} e_{2}=0$.
(a) Show that the following are equivalent:
(i) R contains an idempotent different from 0 and 1.
(ii) R contains an orthogonal pair of idempotents.
(iii) $R \cong R_{1} \times R_{2}$ for some rings R_{1} and R_{2}.
(b) Give an example of a non-orthogonal pair of distinct idemponents.
(c) Find all idempotents in the ring $\mathbb{Z} / 20 \mathbb{Z}$.

