Unless otherwise specified, assume that R is a commutative ring with 1.

- 1. Let $R = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.
 - (a) Show that R is an integral domain with 1.
 - (b) Show that $U(R) = \{\pm 1\}.$
 - (c) Show that 3 is irreducible in R.
 - (d) Show that $a = 2 + \sqrt{-5}$ and $b = 2 \sqrt{-5}$ are both irreducible in R.
 - (e) Conclude that $3 \nmid 2 + \sqrt{-5}$ and $3 \nmid 2 \sqrt{-5}$ in R.
 - (f) Conclude that 3 is irreducible but not prime in R, thus R is not a PID.
- 2. Let $m \in \mathbb{N}$ be square-free.
 - (a) Show that $\mathbb{Q}[\sqrt{m}] = \{r + s\sqrt{m} : r, s \in \mathbb{Q}\}$, and that $\mathbb{Q}[\sqrt{m}]$ is a field. It is thus its own field of fractions, which we will denote by $\mathbb{Q}(\sqrt{m})$.
 - (b) Show that R_m is an integral domain with 1.
 - (c) Show that $\mathbb{Q}(\sqrt{m})$ is the field of fractions for R_m .
 - (d) Show that R_m is the set of all those $r + s\sqrt{n} \in \mathbb{Q}(\sqrt{m})$ that are roots of a monic quadratic polynomial $x^2 + cx + d \in \mathbb{Z}[x]$. [This is the reason for the variation in the definition of R_m when $m \equiv 1 \pmod{4}$.]
- 3. For any $x = r + s\sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be $N(x) = r^2 ms^2$.
 - (a) Show that N(xy) = N(x)N(y).
 - (b) Show that $N(x) \in \mathbb{Z}$ if $x \in R_m$.
 - (c) Show that $u \in U(R_m)$ if and only if $N(u) = \pm 1$.
 - (d) Use (c) to show that $U(R_{-1}) = \{\pm 1, \pm i\}, U(R_{-3}) = \{\pm 1, \pm (1 \pm \sqrt{-3})/2\}$, and $U(R_m) = \{\pm 1\}$ for all other negative square-free *m* in \mathbb{Z} .
- 4. Let a and b be nonzero elements of a Euclidean domain such that $a \mid b$ and d(a) = d(b). Show that a and b are associates.
- 5. Prove that if m = -3, -7, or -11, then R_m is Euclidean with d(r) = |N(r)| for all nonzero $r \in R_m$. [*Hint*: Mimic the proof of the same result for m = -2, -1, 2, and 3, but choose $d \in \mathbb{Z}$ nearest to 2t and then $c \in \mathbb{Z}$ so that c is as near to 2s as possible with $c \equiv d \pmod{2}$, then set $q = (c + d\sqrt{m})/2$.]