Unless otherwise specified, assume that R is a commutative ring with 1 .

1. Let $R=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.
(a) Show that R is an integral domain with 1 .
(b) Show that $U(R)=\{ \pm 1\}$.
(c) Show that 3 is irreducible in R.
(d) Show that $a=2+\sqrt{-5}$ and $b=2-\sqrt{-5}$ are both irreducible in R.
(e) Conclude that $3 \nmid 2+\sqrt{-5}$ and $3 \nmid 2-\sqrt{-5}$ in R.
(f) Conclude that 3 is irreducible but not prime in R, thus R is not a PID.
2. Let $m \in \mathbb{N}$ be square-free.
(a) Show that $\mathbb{Q}[\sqrt{m}]=\{r+s \sqrt{m}: r, s \in \mathbb{Q}\}$, and that $\mathbb{Q}[\sqrt{m}]$ is a field. It is thus its own field of fractions, which we will denote by $\mathbb{Q}(\sqrt{m})$.
(b) Show that R_{m} is an integral domain with 1.
(c) Show that $\mathbb{Q}(\sqrt{m})$ is the field of fractions for R_{m}.
(d) Show that R_{m} is the set of all those $r+s \sqrt{n} \in \mathbb{Q}(\sqrt{m})$ that are roots of a monic quadratic polynomial $x^{2}+c x+d \in \mathbb{Z}[x]$. [This is the reason for the variation in the definition of R_{m} when $m \equiv 1(\bmod 4)$.]
3. For any $x=r+s \sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be $N(x)=r^{2}-m s^{2}$.
(a) Show that $N(x y)=N(x) N(y)$.
(b) Show that $N(x) \in \mathbb{Z}$ if $x \in R_{m}$.
(c) Show that $u \in U\left(R_{m}\right)$ if and only if $N(u)= \pm 1$.
(d) Use (c) to show that $U\left(R_{-1}\right)=\{ \pm 1, \pm i\}, U\left(R_{-3}\right)=\{ \pm 1, \pm(1 \pm \sqrt{-3}) / 2\}$, and $U\left(R_{m}\right)=\{ \pm 1\}$ for all other negative square-free m in \mathbb{Z}.
4. Let a and b be nonzero elements of a Euclidean domain such that $a \mid b$ and $d(a)=d(b)$. Show that a and b are associates.
5. Prove that if $m=-3,-7$, or -11 , then R_{m} is Euclidean with $d(r)=|N(r)|$ for all nonzero $r \in R_{m}$. [Hint: Mimic the proof of the same result for $m=-2,-1,2$, and 3, but choose $d \in \mathbb{Z}$ nearest to $2 t$ and then $c \in \mathbb{Z}$ so that c is as near to $2 s$ as possible with $c \equiv d(\bmod 2)$, then set $q=(c+d \sqrt{m}) / 2$.]
