Lecture 1.1: An introduction to groups

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

What is a group?

Definition

A nonempty set with an associative binary operation * is a semigroup.

A semigroup S with an identity element 1 such that 1x = x1 = x for all $x \in S$ is a monoid.

A group is a monoid G with the property that every $x \in G$ has an inverse $y \in G$ such that xy = yx = 1.

Proposition

- 1. The identity of a monoid is unique.
- 2. Each element of a group has a unique inverse.
- 3. If $x, y \in G$, then $(xy)^{-1} = y^{-1}x^{-1}$.

Remarks

- If the binary operation is addition, we write the identity as 0.
- Easy to check that $x^m x^n = x^{m+n}$ and $(x^m)^n = x^{nm}$, $\forall m, n \in \mathbb{Z}$. [Additive analogue?]
- If xy = yx for all $x, y \in G$, then G is said to be abelian.

In this lecture, we'll gain some intuition for groups before we begin a rigorous mathematical treatment of them.

M. Macauley (Clemson)

Examples of groups

- 1. $G = \{1, -1\} \subseteq \mathbb{R}$; multiplication.
- 2. $G = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$; addition.
- 3. $G = \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$; multiplication. (Also works for $G = \mathbb{R}^*, \mathbb{C}^*$, but not \mathbb{Z}^* .)
- 4. G = Perm(S), the set of *permutations* of S; function composition.

Special case: $G = S_n$, the set of permutations of $S = \{1, ..., n\}$.

5. $D_n =$ symmetries of a regular *n*-gon.

6.
$$G = Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$
, where $1 := I_{4 \times 4}$ and
 $i = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, $j = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$, $k = \begin{bmatrix} 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.
Note that $j^2 = j^2 = k^2 = ijk = -1$.

7. Klein 4-group, i.e., the symmetries of a rectangle:

$$V = \{1, v, h, r\} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

8. Symmetries of a frieze diagram, wallpaper, crystal, platonic solid, etc.

Remark. Writing a group G with matrices is called a representation of G. (What are some advantages of doing this?)

Cayley diagrams

A totally optional, but very useful way to visualize groups, is using a Cayley diagram.

This is a directed graph (*G*, *E*), where one *first fixes a generating set S*. We write $G = \langle S \rangle$. Then:

- Vertices: elements of G
- Directed edges: generators.

The vertices can be labeled with elements, with "configurations", or unlabeled.

Example. Two Cayley diagrams for $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} = \langle 1 \rangle = \langle 2, 3 \rangle$:

The dihedral group D_3

The set $D_3 = \langle r, f \rangle$ of symmetries of an equilateral triangle is a group generated by a clockwise 120° rotation r, and a horizontal flip f.

It can also be generated by f and another reflection g.

Here are two different Cayley diagrams for $D_3 = \langle r, f \rangle = \langle f, g \rangle$, where $g = r^2 f$.

The following are several (of many!) presentations for this group:

$$D_3 = \langle r, f \mid r^3 = f^2 = 1, \ r^2 f = fr \rangle = \langle f, g \mid f^2 = g^2 = (fg)^3 = 1 \rangle.$$

The quaternion group

The following Cayley diagram, laid out two different ways, describes a group of size 8 called the quaternion group, often denoted $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$.

The "numbers" j and k individually act like $i = \sqrt{-1}$, because $i^2 = j^2 = k^2 = -1$.

Multiplication of $\{\pm i, \pm j, \pm k\}$ works like the cross product of unit vectors in \mathbb{R}^3 :

$$ij = k$$
, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.

Here are two possible presentations for this group:

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle = \langle i, j \mid i^4 = j^4 = 1, iji = j \rangle$$
.

Recall that we can alternatively respresent Q_8 with matrices.

M. Macauley (Clemson)

The 17 types of wallpaper patterns

Frieze groups are *one-dimensional symmetry groups*. Two-dimensional symmetry groups are called wallpaper groups.

There are 17 wallpapers groups, shown below, with the official IUC notation, adopted by the International Union of Crystallography in 1952.

Crystallography

Three-dimensional symmetry groups are called *crystal groups*. There are 230 crystal groups. One such crystal is shown below.

The study of crystals is called crystallography, and group theory plays a big role is this branch of chemistry.

Subgroups

Definition

A subset $H \subseteq G$ that is a group is called a subgroup of G, and denoted $H \leq G$.

Examples. What are some of the subgroups of the groups we've seen?

- 1. $G = \{1, -1\} \subseteq \mathbb{R}$; multiplication.
- 2. $G = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$; addition.
- 3. $G = \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$; multiplication. (Also works for $G = \mathbb{R}^*, \mathbb{C}^*$, but *not* \mathbb{Z}^* .)
- G = Perm(S), the set of *permutations* of S; function composition.
 Special case: G = S_n, the set of permutations of S = {1,...,n}.
- 5. $D_n =$ symmetries of a regular *n*-gon.
- 6. $G = Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, where $1 := I_{4 \times 4}$ and

$$i = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad j = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad k = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Note that $i^2 = j^2 = k^2 = ijk = -1$.

7. Klein 4-group, i.e., the symmetries of a rectangle:

$$V = \{1, v, h, r\} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

8. Symmetries of a frieze diagram, wallpaper, crystal, platonic solid, etc.

Subgroups (proofs done on the board)

Proposition 1.4

A nonempty set $H \subseteq G$ is a subgroup if and only if $xy^{-1} \in H$ for all $x, y \in H$.

Corollary 1.5

If $\{H_{\alpha}\}$ is any collection of subgroups of G, then $\bigcap_{\alpha} H_{\alpha} \leq G$.

Every set $S \subseteq G$ generates a subgroup, denoted $\langle S \rangle$. There are two ways to think of this:

• from the bottom, up, as "words in $S \cup S^{-1}$ ", where where $S^{-1} = \{x^{-1} \mid x \in S\}$: $\langle S \rangle = \{x_1 x_2 \cdots x_k \mid x_i \in S \cup S^{-1}, k \in N\}$

• from the top, down:
$$\langle S \rangle := \bigcap_{S \subseteq H_{\alpha} \leq G} H_{\alpha}.$$

Think of $\langle S \rangle$ as the "smallest subgroup containing S".

Proposition $\{x_1, x_2 \cdots x_k \mid x_i \in S \cup S^{-1}, k \in N\} = \bigcap_{S \subseteq H_\alpha \leq G} H_\alpha.$

Cyclic groups (proofs done on the board)

Definition

A group G is cyclic if G is generated by a single element, i.e., if $G = \langle x \rangle$.

Examples

- $(\mathbb{Z}, +) = \langle 1 \rangle = \langle -1 \rangle.$
- Rotational symmetries of a regular *n*-gon, $C_n := \langle r \rangle$. [Or the additive group $(\mathbb{Z}_n, +)$.]

Given $x \in G$, define the order of x to be $|x| := |\langle x \rangle|$.

Proposition 1.6

Suppose $|x| = n < \infty$ and $x^m = 1$. Then $n \mid m$.

Proposition 1.7

Every subgroup of a cyclic group is cyclic.

Corollary

If $G = \langle x \rangle$ of order $n < \infty$, and $k \mid n$, then $\langle x^{n/k} \rangle$ is the *unique* subgroup of order k in G.

Cosets

Definition

If $H \leq G$ and $x, y \in G$, then x and y are congruent mod H, written $x \equiv y \pmod{H}$, if $y^{-1}x \in H$.

Congruent modulo H means "the difference of x and y lies in H."

Easy exercise: \equiv is an equivalence relation for any H.

Remark

$$x \equiv y \pmod{H}$$
 means " $x = yh$ for some $h \in H$ ".

Definition

The equivalence class containing y is $yH := \{yh \mid h \in H\}$, called the left coset of H containing y. Note that xH = yH (as sets) iff $x \equiv y \pmod{H}$.

Cosets

Recall that for each $x \in G$, the left coset of H containing x is $xH := \{xh \mid h \in H\}$. We can similarly define the right coset of H containing x as $Hx := \{hx \mid h \in H\}$.

Notice that the left and right cosets of the subgroup $H = \langle f \rangle \leq D_3$ are *different*:

Cosets

The index of H in G, denoted [G : H] is the number of distinct left cosets of H in G.

Lagrange's theorem If H < G, then $|G| = [G : H] \cdot |H|$.

Definition

The normalizer of H in G, denoted $N_G(H)$, is

$$N_G(H) = \{g \in G : gH = Hg\} = \{g \in G : gHg^{-1} = H\}.$$

It is easy to check that $H \leq N_G(G) \leq G$.

In the "cartoon" below, the normalizer consists of the elements in the "red cosets".

M. Macauley (Clemson)

Normal subgroups

Definition

A subgroup $H \leq G$ is normal if gH = Hg for all $g \in G$. We write $H \leq G$.

Useful remark (exercise)

The following conditions are all equivalent to a subgroup $H \leq G$ being normal:

- (i) gH = Hg for all $g \in G$; ("left cosets are right cosets");
- (ii) $gHg^{-1} = H$ for all $g \in G$; ("only one conjugate subgroup")
- (iii) $ghg^{-1} \in H$ for all $g \in G$; ("closed under conjugation").
- (iv) $N_G(H) = G$ ("every element normalizes H").

Big idea (exercise)

If $N \lhd G$, then there is a well-defined quotient group:

$$G/N := \{xN \mid x \in G\}, \qquad xN \cdot yN := xyN.$$

If G is written additively, then cosets have the form x + N, and

$$(x + N) + (y + N) = (x + y) + N.$$

M. Macauley (Clemson)

Normal subgroups and quotients

Definition

The center of G is the set $Z(G) := \{x \in G \mid xy = yx \text{ for all } y \in G\}.$

It is easy to show that $Z(G) \lhd G$.

Example. The center of Q_8 is $N = \langle -1 \rangle$. Let's see what the natural quotient η : $Q_8 \rightarrow Q_8/N$ looks like in terms of Cayley diagrams.

Do you notice any relationship between $Q_8/\text{Ker}(\phi)$ and $\text{Im}(\phi)$?

A visual interpretation of the quotient map being well-defined

Let's try to gain more insight. Consider a group G with subgroup H. Recall that:

- each left coset gH is the set of nodes that the H-arrows can reach from g (which looks like a copy of H at g);
- each right coset Hg is the set of nodes that the g-arrows can reach from H.

The following figure depicts the potential ambiguity that may arise when cosets are collapsed.

The action of the blue arrows above illustrates multiplication of a left coset on the right by some element. That is, the picture shows how left and right cosets *interact*.

Homomorphisms

Definition

A homomorphism is a function $f: G \to H$ such that f(xy) = f(x)g(y) for all $x, y \in G$.

If f is 1–1, it is a monomorphism.

If f is onto, it is an epimormophism.

If f is 1–1 and onto, it is an isomorphism. We say that G and H are isomorphic, and write $G \cong H$.

A homomorphism $f: G \rightarrow G$ is an endomorphism.

An isomorphism $f: G \rightarrow G$ is an automorphism.

The kernel of a homomorphism $f: G \to H$ is the set ker $f = \{x \in G \mid f(x) = 1\}$.

Proposition

If $f: G \to H$ is a homomorphism, then ker f is a subgroup of G, and f is 1–1 if and only if ker $f = \{1\}$.

Homomorphisms

Examples.

- 1. Let $N \leq G$. Then $\eta: G \to G/N$, where $\eta: g \mapsto gN$ is a homomorphism called the natural quotient.
- 2. Let $G = (\mathbb{R}, +)$, $H = \{r \in \mathbb{R} \mid r > 0\}$. Then

$$f: G \to H, \qquad f(r) = e^r$$

is an isomorphism. The inverse map is f^{-1} : $H \to G$, $f^{-1}(x) = \ln x$. (Verify this!)

3. Let $G = D_3$, $H = \{-1, 1\}$. Define

$$f(x) = egin{cases} 1 & x ext{ is a rotation} \ -1 & x ext{ is a reflection} \end{cases}$$

Then f is a homomorphism. (Check!)

4. Let G be abelian and $n \in \mathbb{Z}$. Then

$$f: G \to G, \qquad f(x) = x^n$$

is an endomorphism, since $(xy)^n = x^n y^n$.

5. Let $G = S_3$, $H = \mathbb{Z}_6$. Then $G \not\cong H$. (Why?)

Automorphisms

Proposition

The set Aut(G) of automorphisms of G is a group with respect to composition.

Remarks.

- An automorphism is determined by where it sends the generators.
- An automorphism ϕ must send generators to generators. In particular, if G is cyclic, then it determines a permutation of the set of (all possible) generators.

Examples

- 1. There are two automorphisms of \mathbb{Z} : the identity, and the mapping $n \mapsto -n$. Thus, $Aut(\mathbb{Z}) \cong C_2$.
- 2. There is an automorphism $\phi \colon \mathbb{Z}_5 \to \mathbb{Z}_5$ for each choice of $\phi(1) \in \{1, 2, 3, 4\}$. Thus, $Aut(\mathbb{Z}_5) \cong C_4$ or V_4 . (Which one?)
- 3. An automorphism ϕ of $V_4 = \langle h, v \rangle$ is determined by the image of h and v. There are 3 choices for $\phi(h)$, and then 2 choices for $\phi(v)$. Thus, $|\operatorname{Aut}(V_4)| = 6$, so it is either $C_6 \cong C_2 \times C_3$, or S_3 . (Which one?)

Automorphism groups of \mathbb{Z}_n

Definition

The multiplicative group of integers modulo *n*, denoted \mathbb{Z}_n^* or U(n), is the group

$$U(n) := \{k \in \mathbb{Z}_n \mid \gcd(n, k) = 1\}$$

where the binary operation is multiplication, modulo n.

Proposition

The automorphism group of \mathbb{Z}_n is $Aut(\mathbb{Z}_n) = \{\sigma_a \mid a \in U(n)\} \cong U(n)$, where

$$\sigma_a \colon \mathbb{Z}_n \longrightarrow \mathbb{Z}_n, \qquad \sigma_a(1) = a.$$

M. Macauley (Clemson)

Automorphisms of D_3

Let's find all automorphisms of $D_3 = \langle r, f \rangle$. We'll see a very similar example to this when we study Galois theory.

Clearly, every automorphism ϕ is completely determined by $\phi(r)$ and $\phi(f)$.

Since automorphisms preserve order, if $\phi \in Aut(D_3)$, then

$$\phi(e) = e$$
, $\phi(r) = \underbrace{r \text{ or } r^2}_{2 \text{ choices}}$, $\phi(f) = \underbrace{f, rf, \text{ or } r^2 f}_{3 \text{ choices}}$.

Thus, there are at most $2 \cdot 3 = 6$ automorphisms of D_3 .

Let's try to define two maps, (i) $\alpha: D_3 \to D_3$ fixing r, and (ii) $\beta: D_3 \to D_3$ fixing f:

$$\begin{cases} \alpha(r) = r \\ \alpha(f) = rf \end{cases} \qquad \begin{cases} \beta(r) = r^2 \\ \beta(f) = f \end{cases}$$

I claim that:

- these both define automorphisms (check this!)
- these generate six *different* automorphisms, and thus $\langle \alpha, \beta \rangle = \operatorname{Aut}(D_3)$.

To determine what group this is isomorphic to, find these six automorphisms, and make a group presentation and/or multiplication table. Is it abelian?

Automorphisms of D_3

An automorphism can be thought of as a re-wiring of the Cayley diagram.

Automorphisms of D_3

Here is the multiplication table and Cayley diagram of Aut $(D_3) = \langle \alpha, \beta \rangle$.

	id	α	α^2	β	lphaeta	$\alpha^2\!\beta$
id	id	α	α^2	β	lphaeta	$\alpha^2\!\beta$
α	α	α^2	id	lphaeta	$\alpha^2\!\beta$	β
α^2	α^2	id	α	$\alpha^2\!\beta$	β	$\alpha\beta$
β	β	$\alpha^2\!\beta$	lphaeta	id	α^2	α
lphaeta	lphaeta	β	$\alpha^2 \beta$	α	id	α^2
$lpha^2\!eta$	$lpha^2\!eta$	lphaeta	β	α^2	α	id

It is purely coincidence that $Aut(D_3) \cong D_3$. For example, we've already seen that

 $\operatorname{Aut}(\mathbb{Z}_5)\cong U(5)\cong \mathbb{Z}_4\,,\qquad \operatorname{Aut}(\mathbb{Z}_6)\cong U(6)\cong \mathbb{Z}_2\,,\qquad \operatorname{Aut}(\mathbb{Z}_8)\cong U(8)\cong \mathbb{Z}_2\times \mathbb{Z}_2\,.$

Automorphisms of $V_4 = \langle h, v \rangle$

The following permutations are both automorphisms:

Automorphisms of $V_4 = \langle h, v \rangle$

Here is the multiplication table and Cayley diagram of Aut(V_4) = $\langle \alpha, \beta \rangle \cong S_3 \cong D_3$.

	id	α	α^2	β	lphaeta	$\alpha^2\!\beta$
id	id	α	α^2	β	lphaeta	$\alpha^2\!\beta$
α	α	α^2	id	lphaeta	$lpha^2\!eta$	β
α^2	α^2	id	α	$lpha^2\!eta$	β	lphaeta
β	β	$\alpha^2\!\beta$	lphaeta	id	α^2	α
lphaeta	lphaeta	β	$\alpha^2\!\beta$	α	id	α^2
$\alpha^2\!\beta$	$lpha^2\!eta$	lphaeta	β	α^2	α	id

Note that α and β can be thought of as the permutations $h \bigvee h^v$ and $h \bigvee h^v$ and so $Aut(G) \hookrightarrow Perm(G) \cong S_n$ always holds.

The first isomorphism theorem

Fundamental homomorphism theorem (FHT)

If $\phi \colon G \to H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G/\operatorname{Ker}(\phi)$.

The FHT says that every homomorphism can be decomposed into two steps: (i) quotient out by the kernel, and then (ii) relabel the nodes via ϕ .

Proof

Construct an explicit map $i: G/\operatorname{Ker}(\phi) \to \operatorname{Im}(\phi)$ and prove that it is an isomorphism...

M. Macauley (Clemson)

The first isomorphism theorem

Fundamental homomorphism theorem (FHT)

If $\phi \colon G \to H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G/\operatorname{Ker}(\phi)$.

Let's revist a familiar example to illustrate this. Consider a homomorphism:

$$\phi: Q_8 \longrightarrow V_4, \qquad \phi(i) = h, \quad \phi(j) = v.$$

It is easy to check that $\operatorname{Ker}(\phi) = \langle -1 \rangle \trianglelefteq Q_8$.

The FHT says that this homomorphism can be done in two steps: (i) quotient by $\langle -1 \rangle$, and then (ii) relabel the nodes accordingly.

A picture of the isomorphism $i: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}/\langle 12 \rangle$ (from the VGT website)

How to show two groups are isomorphic

The standard way to show $G \cong H$ is to construct an isomorphism $\phi: G \to H$.

When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that $G/N \cong H$. There are two approaches:

- (i) Define a map $\phi: G/N \to H$ and prove that it is well-defined, a homomorphism, and a bijection.
- (ii) Define a map $\phi: G \to H$ and prove that it is a homomorphism, a surjection (onto), and that Ker $\phi = N$.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.

For example, each of the following are results that we will see very soon, for which (ii) works quite well:

- $\blacksquare \mathbb{Z}/\langle n \rangle \cong \mathbb{Z}_n;$
- $\blacksquare \mathbb{Q}^*/\langle -1\rangle \cong \mathbb{Q}^+;$
- $AB/B \cong A/(A \cap B)$ (assuming $A, B \triangleleft G$);
- $G/(A \cap B) \cong (G/A) \times (G/B)$ (assuming G = AB).

The Second Isomorphism Theorem

Diamond isomorphism theorem

Let $H \leq G$, and $N \triangleleft N_G(H)$. Then

- (i) The product $HN = \{hn \mid h \in H, n \in N\}$ is a subgroup of G.
- (ii) The intersection $H \cap N$ is a normal subgroup of G.

(iii) The following quotient groups are isomorphic:

$$HN/N \cong H/(H \cap N)$$

Proof (sketch)

Define the following map

$$\phi\colon H\longrightarrow HN/N\,,\qquad \phi\colon h\longmapsto hN\,.$$

If we can show:

- 1. ϕ is a homomorphism,
- 2. ϕ is surjective (onto),
- 3. Ker $\phi = H \cap N$,

then the result will follow immediately from the FHT.

The Third Isomorphism Theorem

Freshman theorem

Consider a chain $N \leq H \leq G$ of normal subgroups of G. Then

- 1. The quotient H/N is a normal subgroup of G/N;
- 2. The following quotients are isomorphic:

 $(G/N)/(H/N) \cong G/H$.

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

The Fourth Isomorphism Theorem

Correspondence theorem

Let $N \triangleleft G$. There is a 1–1 correspondence between subgroups of G/N and subgroups of G that contain N. In particular, every subgroup of G/N has the form $\overline{A} := A/N$ for some A satisfying $N \leq A \leq G$.

This means that the corresponding subgroup lattices are identical in structure.

The quotient $Q_8/\langle -1 \rangle$ is isomorphic to V_4 . The subgroup lattices can be visualized by "collapsing" $\langle -1 \rangle$ to the identity.

Correspondence theorem (full version)

Let $N \lhd G$. Then there is a bijection from the subgroups of G/N and subgroups of G that contain N. In particular, every subgroup of G/N has the form $\overline{A} := A/N$ for some A satisfying $N \le A \le G$. Moreover, if $A, B \le G$, then

- 1. $A \leq B$ if and only if $\overline{A} \leq \overline{B}$,
- 2. If $A \leq B$, then $[B : A] = [\overline{B} : \overline{A}]$,
- 3. $\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$,
- 4. $\overline{A \cap B} = \overline{A} \cap \overline{B}$,
- 5. $A \triangleleft G$ if and only if $\overline{A} \triangleleft \overline{G}$.

