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What is a group?

Definition

A nonempty set with an associative binary operation ∗ is a semigroup.

A semigroup S with an identity element 1 such that 1x = x1 = x for all x ∈ S is a monoid.

A group is a monoid G with the property that every x ∈ G has an inverse y ∈ G such that
xy = yx = 1.

Proposition

1. The identity of a monoid is unique.

2. Each element of a group has a unique inverse.

3. If x , y ∈ G , then (xy)−1 = y−1x−1.

Remarks

If the binary operation is addition, we write the identity as 0.

Easy to check that xmxn = xm+n and (xm)n = xnm, ∀m, n ∈ Z. [Additive analogue?]

If xy = yx for all x , y ∈ G , then G is said to be abelian.

In this lecture, we’ll gain some intuition for groups before we begin a rigorous mathematical
treatment of them.
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Examples of groups

1. G = {1,−1} ⊆ R; multiplication.

2. G = Z,Q,R,C; addition.

3. G = Q∗ = Q \ {0}; multiplication. (Also works for G = R∗,C∗, but not Z∗.)
4. G = Perm(S), the set of permutations of S ; function composition.

Special case: G = Sn, the set of permutations of S = {1, . . . , n}.
5. Dn = symmetries of a regular n-gon.

6. G = Q8 = {±1,±i ,±j ,±k}, where 1 := I4×4 and

i =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, j =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, k =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

Note that i2 = j2 = k2 = ijk = −1.

7. Klein 4-group, i.e., the symmetries of a rectangle:

V = {1, v , h, r} =

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0
0 1

]
,

[
−1 0
0 −1

]}

8. Symmetries of a frieze diagram, wallpaper, crystal, platonic solid, etc.

Remark. Writing a group G with matrices is called a representation of G . (What are some
advantages of doing this?)
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Cayley diagrams

A totally optional, but very useful way to visualize groups, is using a Cayley diagram.

This is a directed graph (G ,E), where one first fixes a generating set S. We write G = 〈S〉.
Then:

Vertices: elements of G

Directed edges: generators.

The vertices can be labeled with elements, with “configurations”, or unlabeled.

Example. Two Cayley diagrams for Z6 = {0, 1, 2, 3, 4, 5} = 〈1〉 = 〈2, 3〉:

0

1

2

3

4

5 3

51

0

4 2
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The dihedral group D3

The set D3 = 〈r , f 〉 of symmetries of an equilateral
triangle is a group generated by a clockwise 120◦

rotation r , and a horizontal flip f .

It can also be generated by f and another reflection g .

1
2 3

1
3 2

2
1 3

3
2 1

2
3 1

3
1 2

Here are two different Cayley diagrams for D3 = 〈r , f 〉 = 〈f , g〉, where g = r2f .

f

rfr2f

1

r 2 r

1

r2f

r 2

rf

r

f

The following are several (of many!) presentations for this group:

D3 = 〈r , f | r3 = f 2 = 1, r2f = fr〉 = 〈f , g | f 2 = g2 = (fg)3 = 1〉.
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The quaternion group
The following Cayley diagram, laid out two different ways, describes a group of size 8 called
the quaternion group, often denoted Q8 = {±1,±i ,±j ,±k}.

1

j

k

−i

−1

−j

−k

i

1 i

−1−i

k −j

−kj

The “numbers” j and k individually act like i =
√
−1, because i2 = j2 = k2 = −1.

Multiplication of {±i ,±j ,±k} works like the cross product of unit vectors in R3:

ij = k, jk = i , ki = j , ji = −k, kj = −i , ik = −j .

Here are two possible presentations for this group:

Q8 = 〈i , j , k | i2 = j2 = k2 = ijk = −1〉 = 〈i , j | i4 = j4 = 1, iji = j〉 .

Recall that we can alternatvely respresent Q8 with matrices.
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The 7 types of frieze patterns · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Remarks

The symmetry groups of these are generated by some subset of the following
symmetries:

t = translation, g = glide reflection, h = horizontal reflection, v = vertical reflection, r = 180◦ rotation.

These 7 symmetric groups fall into 4 classes “up to isomorphism”.
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The 17 types of wallpaper patterns

Frieze groups are one-dimensional symmetry groups. Two-dimensional symmetry groups are
called wallpaper groups.

There are 17 wallpapers groups, shown below, with the official IUC notation, adopted by the
International Union of Crystallography in 1952.
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Crystallography

Three-dimensional symmetry groups are called crystal groups. There are 230 crystal groups.
One such crystal is shown below.

The study of crystals is called crystallography, and group theory plays a big role is this
branch of chemistry.
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Subgroups
Definition

A subset H ⊆ G that is a group is called a subgroup of G , and denoted H ≤ G .

Examples. What are some of the subgroups of the groups we’ve seen?

1. G = {1,−1} ⊆ R; multiplication.

2. G = Z,Q,R,C; addition.

3. G = Q∗ = Q \ {0}; multiplication. (Also works for G = R∗,C∗, but not Z∗.)
4. G = Perm(S), the set of permutations of S; function composition.

Special case: G = Sn, the set of permutations of S = {1, . . . , n}.
5. Dn = symmetries of a regular n-gon.

6. G = Q8 = {±1,±i ,±j ,±k}, where 1 := I4×4 and

i =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, j =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, k =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

Note that i2 = j2 = k2 = ijk = −1.

7. Klein 4-group, i.e., the symmetries of a rectangle:

V = {1, v , h, r} =

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0
0 1

]
,

[
−1 0
0 −1

]}
8. Symmetries of a frieze diagram, wallpaper, crystal, platonic solid, etc.
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Subgroups (proofs done on the board)

Proposition 1.4

A nonempty set H ⊆ G is a subgroup if and only if xy−1 ∈ H for all x , y ∈ H.

Corollary 1.5

If {Hα} is any collection of subgroups of G , then
⋂
α

Hα ≤ G .

Every set S ⊆ G generates a subgroup, denoted 〈S〉. There are two ways to think of this:

from the bottom, up, as “words in S ∪ S−1”, where where S−1 = {x−1 | x ∈ S}:

〈S〉 =
{

x1x2 · · · xk | xi ∈ S ∪ S−1, k ∈ N
}

from the top, down: 〈S〉 :=
⋂

S⊆Hα≤G

Hα.

Think of 〈S〉 as the “smallest subgroup containing S”.

Proposition{
x1, x2 · · · xk | xi ∈ S ∪ S−1, k ∈ N

}
=

⋂
S⊆Hα≤G

Hα.
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Cyclic groups (proofs done on the board)

Definition

A group G is cyclic if G is generated by a single element, i.e., if G = 〈x〉.

Examples

(Z,+) = 〈1〉 = 〈−1〉.
Rotational symmetries of a regular n-gon, Cn := 〈r〉. [Or the additive group (Zn,+).]

Given x ∈ G , define the order of x to be |x | :=
∣∣〈x〉∣∣.

Proposition 1.6

Suppose |x | = n <∞ and xm = 1. Then n | m.

Proposition 1.7

Every subgroup of a cyclic group is cyclic.

Corollary

If G = 〈x〉 of order n <∞, and k | n, then 〈xn/k 〉 is the unique subgroup of order k in G .
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Cosets

Definition

If H ≤ G and x , y ∈ G , then x and y are congruent mod H, written x ≡ y (mod H), if
y−1x ∈ H.

Congruent modulo H means “the difference of x and y lies in H.”

f

rfr2 f

1

r2 r

f

rfr2 f

1

r2 r

f

rfr2 f

1

r2 r

Easy exercise: ≡ is an equivalence relation for any H.

Remark

x ≡ y (mod H) means “x = yh for some h ∈ H”.

Definition

The equivalence class containing y is yH := {yh | h ∈ H}, called the left coset of H
containing y . Note that xH = yH (as sets) iff x ≡ y (mod H).
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Cosets

Recall that for each x ∈ G , the left coset of H containing x is xH := {xh | h ∈ H}.

We can similarly define the right coset of H containing x as Hx := {hx | h ∈ H}.

1 i

kj

−1 −i

−k−j

H

jH

iH

kH

Q8

left cosets of H = 〈−1〉
also the rights cosets of H

f

rfr2 f

1

r2 r

r

D3

the left coset r〈f 〉

f

rfr2 f

1

r2 r

r

D3

the right coset 〈f 〉r

Notice that the left and right cosets of the subgroup H = 〈f 〉 ≤ D3 are different:

r 2H

rH

H

r 2f r 2

r rf

1 f

Hr 2Hr

H

r 2f r 2

r rf

1 f
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Cosets

The index of H in G , denoted [G : H] is the number of distinct left cosets of H in G .

Lagrange’s theorem

If H ≤ G , then |G | = [G : H] · |H|.

Definition

The normalizer of H in G , denoted NG (H), is

NG (H) = {g ∈ G : gH = Hg} = {g ∈ G : gHg−1 = H}.

It is easy to check that H ≤ NG (G) ≤ G .

In the “cartoon” below, the normalizer consists of the elements in the “red cosets”.

H g2H g3H gnH. . .

Partition of G by the

left cosets of H

H Hg2

Hg3

Hgn

...

Partition of G by the
right cosets of H
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Normal subgroups
Definition

A subgroup H ≤ G is normal if gH = Hg for all g ∈ G . We write H E G .

Useful remark (exercise)

The following conditions are all equivalent to a subgroup H ≤ G being normal:

(i) gH = Hg for all g ∈ G ; (“left cosets are right cosets”);

(ii) gHg−1 = H for all g ∈ G ; (“only one conjugate subgroup”)

(iii) ghg−1 ∈ H for all g ∈ G ; (“closed under conjugation”).

(iv) NG (H) = G (“every element normalizes H”).

Big idea (exercise)

If N C G , then there is a well-defined quotient group:

G/N := {xN | x ∈ G}, xN · yN := xyN.

If G is written additively, then cosets have the form x + N, and

(x + N) + (y + N) = (x + y) + N.
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Normal subgroups and quotients

Definition

The center of G is the set Z(G) := {x ∈ G | xy = yx for all y ∈ G}.

It is easy to show that Z(G) C G .

Example. The center of Q8 is N = 〈−1〉. Let’s see what the natural quotient
η : Q8 → Q8/N looks like in terms of Cayley diagrams.

1 i

kj

−1 −i

−k−j

Q8

Q8 organized by the

subgroup N = 〈−1〉

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

Q8

left cosets of N

are near each other

N iN

jN kN

Q8/N

collapse cosets

into single nodes

Do you notice any relationship between Q8/Ker(φ) and Im(φ)?
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A visual interpretation of the quotient map being well-defined

Let’s try to gain more insight. Consider a group G with subgroup H. Recall that:

each left coset gH is the set of nodes that the H-arrows can reach from g (which looks
like a copy of H at g);

each right coset Hg is the set of nodes that the g -arrows can reach from H.

The following figure depicts the potential ambiguity that may arise when cosets are collapsed.

g2H g3H

g1H
•• ••

• • • •

blue arrows go from g1H
to multiple left cosets

collapse

cosets

g1H

g2H g3H

ambiguous

blue arrows
g2H

g1H
• • • •

•
• •
•

blue arrows go from g1H
to a unique left coset

collapse

cosets

g1H

g2H

unambiguous

blue arrows

The action of the blue arrows above illustrates multiplication of a left coset on the right by
some element. That is, the picture shows how left and right cosets interact.
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Homomorphisms

Definition

A homomorphism is a function f : G → H such that f (xy) = f (x)g(y) for all x , y ∈ G .

If f is 1–1, it is a monomorphism.

If f is onto, it is an epimormophism.

If f is 1–1 and onto, it is an isomorphism. We say that G and H are isomorphic, and write
G ∼= H.

A homomorphism f : G → G is an endomorphism.

An isomorphism f : G → G is an automorphism.

The kernel of a homomorphism f : G → H is the set ker f = {x ∈ G | f (x) = 1}.

Proposition

If f : G → H is a homomorphism, then ker f is a subgroup of G , and f is 1–1 if and only if
ker f = {1}.
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Homomorphisms

Examples.

1. Let N E G . Then η : G → G/N, where η : g 7→ gN is a homomorphism called the
natural quotient.

2. Let G = (R,+), H = {r ∈ R | r > 0}. Then

f : G → H, f (r) = er

is an isomorphism. The inverse map is f −1 : H → G , f −1(x) = ln x . (Verify this!)

3. Let G = D3, H = {−1, 1}. Define

f (x) =

{
1 x is a rotation

−1 x is a reflection

Then f is a homomorphism. (Check!)

4. Let G be abelian and n ∈ Z. Then

f : G → G , f (x) = xn

is an endomorphism, since (xy)n = xnyn.

5. Let G = S3, H = Z6. Then G 6∼= H. (Why?)
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Automorphisms

Proposition

The set Aut(G) of automorhpisms of G is a group with respect to composition.

Remarks.

An automorphism is determined by where it sends the generators.

An automorphism φ must send generators to generators. In particular, if G is cyclic,
then it determines a permutation of the set of (all possible) generators.

Examples

1. There are two automorphisms of Z: the identity, and the mapping n 7→ −n. Thus,
Aut(Z) ∼= C2.

2. There is an automorphism φ : Z5 → Z5 for each choice of φ(1) ∈ {1, 2, 3, 4}. Thus,
Aut(Z5) ∼= C4 or V4. (Which one?)

3. An automorphism φ of V4 = 〈h, v〉 is determined by the image of h and v . There are 3
choices for φ(h), and then 2 choices for φ(v). Thus, |Aut(V4)| = 6, so it is either
C6
∼= C2 × C3, or S3. (Which one?)
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Automorphism groups of Zn

Definition

The multiplicative group of integers modulo n, denoted Z∗n or U(n), is the group

U(n) := {k ∈ Zn | gcd(n, k) = 1}

where the binary operation is multiplication, modulo n.

1

2

3

4

1 2 3 4

1

2

3

4

2

4

1

3

3

1

4

2

4

3

2

1

U(5) = {1, 2, 3, 4} ∼= C4

1

5

1 5

1

5

5

1

U(6) = {1, 5} ∼= C2

1

3

5

7

1 3 5 7

1

3

5

7

3

1

7

5

5

7

1

3

7

5

3

1

U(8) = {1, 3, 5, 7} ∼= C2 × C2

Proposition

The automorphism group of Zn is Aut(Zn) = {σa | a ∈ U(n)} ∼= U(n), where

σa : Zn −→ Zn , σa(1) = a .
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Automorphisms of D3

Let’s find all automorphisms of D3 = 〈r , f 〉. We’ll see a very similar example to this when we
study Galois theory.

Clearly, every automorphism φ is completely determined by φ(r) and φ(f ).

Since automorphisms preserve order, if φ ∈ Aut(D3), then

φ(e) = e , φ(r) = r or r2︸ ︷︷ ︸
2 choices

, φ(f ) = f , rf , or r2f︸ ︷︷ ︸
3 choices

.

Thus, there are at most 2 · 3 = 6 automorphisms of D3.

Let’s try to define two maps, (i) α : D3 → D3 fixing r , and (ii) β : D3 → D3 fixing f :{
α(r) = r
α(f ) = rf

{
β(r) = r2

β(f ) = f

I claim that:
these both define automorphisms (check this!)

these generate six different automorphisms, and thus 〈α, β〉 = Aut(D3).

To determine what group this is isomorphic to, find these six automorphisms, and make a
group presentation and/or multiplication table. Is it abelian?
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Automorphisms of D3

An automorphism can be thought of as a re-wiring of the Cayley diagram.

r
id7−→ r

f 7−→ f

f

rfr2f

1

r2 r

1

r2f

r2

rf

r

f

r
α7−→ r

f 7−→ rf

f

rfr2f

1

r2 r

1

r2f

r2

rf

r

f

r
α2

7−→ r

f 7−→ r2f

f

rfr2f

1

r2 r

1

r2f

r2

rf

r

f

f

rfr2f

1

r2 r

1

r2f

r2

rf

r

f
r

β7−→ r2

f 7−→ f

f

rfr2f

1

r2 r

1

r2f

r2

rf

r

f
r
αβ7−→ r2

f 7−→ r2f

f

rfr2f

1

r2 r

1

r2f

r2

rf

r

f

r
α2β7−→ r2

f 7−→ rf
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Automorphisms of D3

Here is the multiplication table and Cayley diagram of Aut(D3) = 〈α, β〉.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

It is purely coincidence that Aut(D3) ∼= D3. For example, we’ve already seen that

Aut(Z5) ∼= U(5) ∼= Z4 , Aut(Z6) ∼= U(6) ∼= Z2 , Aut(Z8) ∼= U(8) ∼= Z2 × Z2 .
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Automorphisms of V4 = 〈h, v〉
The following permutations are both automorphisms:

α : h v hv and β : h v hv

h
id7−→ h

v 7−→ v

hv 7−→ hv

1

v

h

hv

h
α7−→ v

v 7−→ hv

hv 7−→ h

1

v

h

hv

h
α2

7−→ hv

v 7−→ h

hv 7−→ v

1

v

h

hv

h
β7−→ v

v 7−→ h

hv 7−→ hv

1

v

h

hv

h
αβ7−→ h

v 7−→ hv

hv 7−→ v

1

v

h

hv

h
α2β7−→ hv

v 7−→ v

hv 7−→ h

1

v

h

hv
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Automorphisms of V4 = 〈h, v〉

Here is the multiplication table and Cayley diagram of Aut(V4) = 〈α, β〉 ∼= S3
∼= D3.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

Note that α and β can be thought of as the permutations h v hv and h v hv and so

Aut(G) ↪→ Perm(G) ∼= Sn always holds.
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The first isomorphism theorem

Fundamental homomorphism theorem (FHT)

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

The FHT says that every homomorphism can be decomposed into two steps: (i) quotient
out by the kernel, and then (ii) relabel the nodes via φ.

G

(Ker φ C G)

φ

any homomorphism

G
/

Ker φ

group of
cosets

Imφ

q
quotient
process

i
remaining isomorphism

(“relabeling”)

Proof

Construct an explicit map i : G/Ker(φ)→ Im(φ) and prove that it is an isomorphism. . .
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The first isomorphism theorem

Fundamental homomorphism theorem (FHT)

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

Let’s revist a familiar example to illustrate this. Consider a homomorphism:

φ : Q8 −→ V4, φ(i) = h, φ(j) = v .

It is easy to check that Ker(φ) = 〈−1〉 E Q8.

The FHT says that this homomorphism can be done in two steps: (i) quotient by 〈−1〉, and
then (ii) relabel the nodes accordingly.

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

Q8

left cosets of
N = 〈−1〉

N iN

jN kN

Q8/N

collapse cosets

into single nodes

1 h

v hv

Q8/N

relabel nodes
into single nodes
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A picture of the isomorphism i : Z12 −→ Z/〈12〉 (from the VGT website)
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How to show two groups are isomorphic

The standard way to show G ∼= H is to construct an isomorphism φ : G → H.

When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that G/N ∼= H. There are two approaches:

(i) Define a map φ : G/N → H and prove that it is well-defined, a homomorphism, and a
bijection.

(ii) Define a map φ : G → H and prove that it is a homomorphism, a surjection (onto), and
that Ker φ = N.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.

For example, each of the following are results that we will see very soon, for which (ii) works
quite well:

Z/〈n〉 ∼= Zn;

Q∗/〈−1〉 ∼= Q+;

AB/B ∼= A/(A ∩ B) (assuming A,B C G);

G/(A ∩ B) ∼= (G/A)× (G/B) (assuming G = AB).
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The Second Isomorphism Theorem

Diamond isomorphism theorem

Let H ≤ G , and N C NG (H). Then

(i) The product HN = {hn | h ∈ H, n ∈ N} is a subgroup of G .

(ii) The intersection H ∩ N is a normal subgroup of G .

(iii) The following quotient groups are isomorphic:

HN/N ∼= H/(H ∩ N)

G

HN

zzz
z DDD

D

H N

H ∩ N

DDDD zzzz

Proof (sketch)

Define the following map

φ : H −→ HN/N , φ : h 7−→ hN .
If we can show:

1. φ is a homomorphism,

2. φ is surjective (onto),

3. Ker φ = H ∩ N,

then the result will follow immediately from the FHT.
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The Third Isomorphism Theorem

Freshman theorem

Consider a chain N ≤ H ≤ G of normal subgroups of G . Then

1. The quotient H/N is a normal subgroup of G/N;

2. The following quotients are isomorphic:

(G/N)/(H/N) ∼= G/H .

G G/N
(G/N)

(H/N)
∼= G

H
H N H/N

(Thanks to Zach Teitler of Boise State for the concept and graphic!)
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The Fourth Isomorphism Theorem

Correspondence theorem

Let N C G . There is a 1–1 correspondence between subgroups of G/N and subgroups of G
that contain N. In particular, every subgroup of G/N has the form A := A/N for some A
satisfying N ≤ A ≤ G .

This means that the corresponding subgroup lattices are identical in structure.

Example

〈1〉

〈−1〉

〈j〉〈i〉 〈k〉

Q8

〈−1〉/〈−1〉

〈j〉/〈−1〉〈i〉/〈−1〉 〈k〉/〈−1〉

Q8/〈−1〉

〈1〉

〈vh〉〈h〉 〈v〉

V4

The quotient Q8/〈−1〉 is isomorphic to V4. The subgroup lattices can be visualized by
“collapsing” 〈−1〉 to the identity.
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Correspondence theorem (full version)

Let N C G . Then there is a bijection from the subgroups of G/N and subgroups of G that
contain N. In particular, every subgroup of G/N has the form A := A/N for some A
satisfying N ≤ A ≤ G . Moreover, if A,B ≤ G , then

1. A ≤ B if and only if A ≤ B,

2. If A ≤ B, then [B : A] = [B : A],

3. 〈A,B〉 = 〈A,B〉,
4. A ∩ B = A ∩ B,

5. A C G if and only if A C G .

Example

〈1〉

〈r2〉〈r2 f 〉〈f 〉 〈rf 〉 〈r3 f 〉

〈r2, f 〉 〈r〉 〈r2, rf 〉

D4

〈r2〉/〈r2〉

〈r〉/〈r2〉〈r2, f 〉/〈r2〉 〈r2, rf 〉/〈r2〉

D4/〈r
2〉

〈1〉

〈vh〉〈h〉 〈v〉

V4

M. Macauley (Clemson) Lecture 1.1: An introduction to groups Math 8510, Abstract Algebra I 35 / 35

mailto:macaule@clemson.edu

