Lecture 1.1: An introduction to groups

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

What is a group?

Definition

A nonempty set with an associative binary operation $*$ is a semigroup.
A semigroup S with an identity element 1 such that $1 x=x 1=x$ for all $x \in S$ is a monoid.
A group is a monoid G with the property that every $x \in G$ has an inverse $y \in G$ such that $x y=y x=1$.

Proposition

1. The identity of a monoid is unique.
2. Each element of a group has a unique inverse.
3. If $x, y \in G$, then $(x y)^{-1}=y^{-1} x^{-1}$.

Remarks

- If the binary operation is addition, we write the identity as 0 .

■ Easy to check that $x^{m} x^{n}=x^{m+n}$ and $\left(x^{m}\right)^{n}=x^{n m}, \forall m, n \in \mathbb{Z}$. [Additive analogue?]

- If $x y=y x$ for all $x, y \in G$, then G is said to be abelian.

In this lecture, we'll gain some intuition for groups before we begin a rigorous mathematical treatment of them.

Examples of groups

1. $G=\{1,-1\} \subseteq \mathbb{R}$; multiplication.
2. $G=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$; addition.
3. $G=\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$; multiplication. (Also works for $G=\mathbb{R}^{*}, \mathbb{C}^{*}$, but not \mathbb{Z}^{*}.)
4. $G=\operatorname{Perm}(S)$, the set of permutations of S; function composition.

Special case: $G=S_{n}$, the set of permutations of $S=\{1, \ldots, n\}$.
5. $D_{n}=$ symmetries of a regular n-gon.
6. $G=Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$, where $1:=I_{4 \times 4}$ and

$$
i=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad j=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad k=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Note that $i^{2}=j^{2}=k^{2}=i j k=-1$.
7. Klein 4-group, i.e., the symmetries of a rectangle:

$$
V=\{1, v, h, r\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

8. Symmetries of a frieze diagram, wallpaper, crystal, platonic solid, etc.

Remark. Writing a group G with matrices is called a representation of G. (What are some advantages of doing this?)

Cayley diagrams

A totally optional, but very useful way to visualize groups, is using a Cayley diagram.
This is a directed graph (G, E), where one first fixes a generating set S. We write $G=\langle S\rangle$. Then:

- Vertices: elements of G
- Directed edges: generators.

The vertices can be labeled with elements, with "configurations", or unlabeled.
Example. Two Cayley diagrams for $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}=\langle 1\rangle=\langle 2,3\rangle$:

The dihedral group D_{3}

The set $D_{3}=\langle r, f\rangle$ of symmetries of an equilateral triangle is a group generated by a clockwise 120° rotation r, and a horizontal flip f.

It can also be generated by f and another reflection g.

Here are two different Cayley diagrams for $D_{3}=\langle r, f\rangle=\langle f, g\rangle$, where $g=r^{2} f$.

The following are several (of many!) presentations for this group:

$$
D_{3}=\left\langle r, f \mid r^{3}=f^{2}=1, r^{2} f=f r\right\rangle=\left\langle f, g \mid f^{2}=g^{2}=(f g)^{3}=1\right\rangle .
$$

The quaternion group

The following Cayley diagram, laid out two different ways, describes a group of size 8 called the quaternion group, often denoted $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$.

The "numbers" j and k individually act like $i=\sqrt{-1}$, because $i^{2}=j^{2}=k^{2}=-1$.
Multiplication of $\{ \pm i, \pm j, \pm k\}$ works like the cross product of unit vectors in \mathbb{R}^{3} :

$$
i j=k, \quad j k=i, \quad k i=j, \quad j i=-k, \quad k j=-i, \quad i k=-j .
$$

Here are two possible presentations for this group:

$$
Q_{8}=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle=\left\langle i, j \mid i^{4}=j^{4}=1, i j i=j\right\rangle .
$$

Recall that we can alternatvely respresent Q_{8} with matrices.

The 7 types of frieze patterns

Remarks

- The symmetry groups of these are generated by some subset of the following symmetries:
$t=$ translation,$\quad g=$ glide reflection,$\quad h=$ horizontal reflection, $\quad v=$ vertical reflection,$\quad r=180^{\circ}$ rotation.
- These 7 symmetric groups fall into 4 classes "up to isomorphism".

The 17 types of wallpaper patterns

Frieze groups are one-dimensional symmetry groups. Two-dimensional symmetry groups are called wallpaper groups.

There are 17 wallpapers groups, shown below, with the official IUC notation, adopted by the International Union of Crystallography in 1952.

p4m

p6m

Crystallography

Three-dimensional symmetry groups are called crystal groups. There are 230 crystal groups. One such crystal is shown below.

The study of crystals is called crystallography, and group theory plays a big role is this branch of chemistry.

Subgroups

Definition

A subset $H \subseteq G$ that is a group is called a subgroup of G, and denoted $H \leq G$.
Examples. What are some of the subgroups of the groups we've seen?

1. $G=\{1,-1\} \subseteq \mathbb{R}$; multiplication.
2. $G=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$; addition.
3. $G=\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$; multiplication. (Also works for $G=\mathbb{R}^{*}, \mathbb{C}^{*}$, but not \mathbb{Z}^{*}.)
4. $G=\operatorname{Perm}(S)$, the set of permutations of S; function composition.

Special case: $G=S_{n}$, the set of permutations of $S=\{1, \ldots, n\}$.
5. $D_{n}=$ symmetries of a regular n-gon.
6. $G=Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$, where $1:=I_{4 \times 4}$ and

$$
i=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad j=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad k=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Note that $i^{2}=j^{2}=k^{2}=i j k=-1$.
7. Klein 4-group, i.e., the symmetries of a rectangle:

$$
V=\{1, v, h, r\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

8. Symmetries of a frieze diagram, wallpaper, crystal, platonic solid, etc.

Subgroups (proofs done on the board)

Proposition 1.4
A nonempty set $H \subseteq G$ is a subgroup if and only if $x y^{-1} \in H$ for all $x, y \in H$.

Corollary 1.5

If $\left\{H_{\alpha}\right\}$ is any collection of subgroups of G, then $\bigcap H_{\alpha} \leq G$.
α

Every set $S \subseteq G$ generates a subgroup, denoted $\langle S\rangle$. There are two ways to think of this:

- from the bottom, up, as "words in $S \cup S^{-1}$ ", where where $S^{-1}=\left\{x^{-1} \mid x \in S\right\}$:

$$
\langle S\rangle=\left\{x_{1} x_{2} \cdots x_{k} \mid x_{i} \in S \cup S^{-1}, k \in N\right\}
$$

- from the top, down: $\langle S\rangle:=\bigcap_{S \subseteq H_{\alpha} \leq G} H_{\alpha}$.

Think of $\langle S\rangle$ as the "smallest subgroup containing S ".
Proposition
$\left\{x_{1}, x_{2} \cdots x_{k} \mid x_{i} \in S \cup S^{-1}, k \in N\right\}=\bigcap_{S \subseteq H_{\alpha} \leq G} H_{\alpha}$.

Cyclic groups (proofs done on the board)

Definition

A group G is cyclic if G is generated by a single element, i.e., if $G=\langle x\rangle$.

Examples

- $(\mathbb{Z},+)=\langle 1\rangle=\langle-1\rangle$.
- Rotational symmetries of a regular n-gon, $C_{n}:=\langle r\rangle$. [Or the additive group $\left(\mathbb{Z}_{n},+\right)$.]

Given $x \in G$, define the order of x to be $|x|:=|\langle x\rangle|$.

Proposition 1.6

Suppose $|x|=n<\infty$ and $x^{m}=1$. Then $n \mid m$.

Proposition 1.7

Every subgroup of a cyclic group is cyclic.

Corollary

If $G=\langle x\rangle$ of order $n<\infty$, and $k \mid n$, then $\left\langle x^{n / k}\right\rangle$ is the unique subgroup of order k in G.

Cosets

Definition

If $H \leq G$ and $x, y \in G$, then x and y are congruent $\bmod H$, written $x \equiv y(\bmod H)$, if $y^{-1} x \in H$.

Congruent modulo H means "the difference of x and y lies in H."

Easy exercise: \equiv is an equivalence relation for any H.

Remark

$x \equiv y(\bmod H)$ means " $x=y h$ for some $h \in H^{\prime}$.

Definition

The equivalence class containing y is $y H:=\{y h \mid h \in H\}$, called the left coset of H containing y. Note that $x H=y H$ (as sets) iff $x \equiv y(\bmod H)$.

Cosets

Recall that for each $x \in G$, the left coset of H containing x is $x H:=\{x h \mid h \in H\}$.
We can similarly define the right coset of H containing x as $H x:=\{h x \mid h \in H\}$.

left cosets of $H=\langle-1\rangle$
also the rights cosets of H

the left coset $r\langle f\rangle$

the right coset $\langle f\rangle r$

Notice that the left and right cosets of the subgroup $H=\langle f\rangle \leq D_{3}$ are different:

Cosets

The index of H in G, denoted $[G: H$] is the number of distinct left cosets of H in G.

Lagrange's theorem

If $H \leq G$, then $|G|=[G: H] \cdot|H|$.

Definition

The normalizer of H in G, denoted $N_{G}(H)$, is

$$
N_{G}(H)=\{g \in G: g H=H g\}=\left\{g \in G: g H g^{-1}=H\right\} .
$$

It is easy to check that $H \leq N_{G}(G) \leq G$.

In the "cartoon" below, the normalizer consists of the elements in the "red cosets".

Partition of G by the left cosets of H

Partition of G by the right cosets of H

Normal subgroups

Definition

A subgroup $H \leq G$ is normal if $g H=H g$ for all $g \in G$. We write $H \unlhd G$.

Useful remark (exercise)

The following conditions are all equivalent to a subgroup $H \leq G$ being normal:
(i) $\mathrm{gH}=\mathrm{Hg}$ for all $g \in G$; ("left cosets are right cosets");
(ii) $\mathrm{gHg}^{-1}=H$ for all $g \in G$; ("only one conjugate subgroup")
(iii) $\mathrm{ghg}^{-1} \in H$ for all $g \in G$; ("closed under conjugation").
(iv) $N_{G}(H)=G$ ("every element normalizes H ").

Big idea (exercise)

If $N \triangleleft G$, then there is a well-defined quotient group:

$$
G / N:=\{x N \mid x \in G\}, \quad x N \cdot y N:=x y N .
$$

If G is written additively, then cosets have the form $x+N$, and

$$
(x+N)+(y+N)=(x+y)+N .
$$

Normal subgroups and quotients

Definition

The center of G is the set $Z(G):=\{x \in G \mid x y=y x$ for all $y \in G\}$.

It is easy to show that $Z(G) \triangleleft G$.
Example. The center of Q_{8} is $N=\langle-1\rangle$. Let's see what the natural quotient $\eta: Q_{8} \rightarrow Q_{8} / N$ looks like in terms of Cayley diagrams.

Q_{8} organized by the subgroup $N=\langle-1\rangle$

left cosets of N are near each other

collapse cosets into single nodes

Do you notice any relationship between $Q_{8} / \operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$?

A visual interpretation of the quotient map being well-defined

Let's try to gain more insight. Consider a group G with subgroup H. Recall that:

- each left coset $g H$ is the set of nodes that the H-arrows can reach from g (which looks like a copy of H at g);
- each right coset Hg is the set of nodes that the g-arrows can reach from H.

The following figure depicts the potential ambiguity that may arise when cosets are collapsed.

blue arrows go from $g_{1} H$ to a unique left coset

The action of the blue arrows above illustrates multiplication of a left coset on the right by some element. That is, the picture shows how left and right cosets interact.

Homomorphisms

Definition

A homomorphism is a function $f: G \rightarrow H$ such that $f(x y)=f(x) g(y)$ for all $x, y \in G$. If f is $1-1$, it is a monomorphism.

If f is onto, it is an epimormophism.
If f is $1-1$ and onto, it is an isomorphism. We say that G and H are isomorphic, and write $G \cong H$.

A homomorphism $f: G \rightarrow G$ is an endomorphism.
An isomorphism $f: G \rightarrow G$ is an automorphism.
The kernel of a homomorphism $f: G \rightarrow H$ is the set $\operatorname{ker} f=\{x \in G \mid f(x)=1\}$.

Proposition

If $f: G \rightarrow H$ is a homomorphism, then $\operatorname{ker} f$ is a subgroup of G, and f is $1-1$ if and only if $\operatorname{ker} f=\{1\}$.

Homomorphisms

Examples.

1. Let $N \unlhd G$. Then $\eta: G \rightarrow G / N$, where $\eta: g \mapsto g N$ is a homomorphism called the natural quotient.
2. Let $G=(\mathbb{R},+), H=\{r \in \mathbb{R} \mid r>0\}$. Then

$$
f: G \rightarrow H, \quad f(r)=e^{r}
$$

is an isomorphism. The inverse map is $f^{-1}: H \rightarrow G, f^{-1}(x)=\ln x$. (Verify this!)
3. Let $G=D_{3}, H=\{-1,1\}$. Define

$$
f(x)= \begin{cases}1 & x \text { is a rotation } \\ -1 & x \text { is a reflection }\end{cases}
$$

Then f is a homomorphism. (Check!)
4. Let G be abelian and $n \in \mathbb{Z}$. Then

$$
f: G \rightarrow G, \quad f(x)=x^{n}
$$

is an endomorphism, since $(x y)^{n}=x^{n} y^{n}$.
5. Let $G=S_{3}, H=\mathbb{Z}_{6}$. Then $G \not \approx H$. (Why?)

Automorphisms

Proposition

The set $\operatorname{Aut}(G)$ of automorhpisms of G is a group with respect to composition.

Remarks.

- An automorphism is determined by where it sends the generators.
- An automorphism ϕ must send generators to generators. In particular, if G is cyclic, then it determines a permutation of the set of (all possible) generators.

Examples

1. There are two automorphisms of \mathbb{Z} : the identity, and the mapping $n \mapsto-n$. Thus, $\operatorname{Aut}(\mathbb{Z}) \cong C_{2}$.
2. There is an automorphism $\phi: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ for each choice of $\phi(1) \in\{1,2,3,4\}$. Thus, $\operatorname{Aut}\left(\mathbb{Z}_{5}\right) \cong C_{4}$ or V_{4}. (Which one?)
3. An automorphism ϕ of $V_{4}=\langle h, v\rangle$ is determined by the image of h and v. There are 3 choices for $\phi(h)$, and then 2 choices for $\phi(v)$. Thus, $\left|\operatorname{Aut}\left(V_{4}\right)\right|=6$, so it is either $C_{6} \cong C_{2} \times C_{3}$, or S_{3}. (Which one?)

Automorphism groups of \mathbb{Z}_{n}

Definition

The multiplicative group of integers modulo n, denoted \mathbb{Z}_{n}^{*} or $U(n)$, is the group

$$
U(n):=\left\{k \in \mathbb{Z}_{n} \mid \operatorname{gcd}(n, k)=1\right\}
$$

where the binary operation is multiplication, modulo n.
$U(5)=\{1,2,3,4\} \cong C_{4}$

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

	1	5
1	1	5
5	5	1

$$
U(8)=\{1,3,5,7\} \cong C_{2} \times C_{2}
$$

$$
U(6)=\{1,5\} \cong C_{2}
$$

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Proposition

The automorphism group of \mathbb{Z}_{n} is $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)=\left\{\sigma_{a} \mid a \in U(n)\right\} \cong U(n)$, where

$$
\sigma_{a}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}, \quad \sigma_{a}(1)=a .
$$

Automorphisms of D_{3}

Let's find all automorphisms of $D_{3}=\langle r, f\rangle$. We'll see a very similar example to this when we study Galois theory.

Clearly, every automorphism ϕ is completely determined by $\phi(r)$ and $\phi(f)$.
Since automorphisms preserve order, if $\phi \in \operatorname{Aut}\left(D_{3}\right)$, then

$$
\phi(e)=e, \quad \phi(r)=\underbrace{r \text { or } r^{2}}_{2 \text { choices }}, \quad \phi(f)=\underbrace{f, r f, \text { or } r^{2} f}_{3 \text { choices }} .
$$

Thus, there are at most $2 \cdot 3=6$ automorphisms of D_{3}.
Let's try to define two maps, (i) $\alpha: D_{3} \rightarrow D_{3}$ fixing r, and (ii) $\beta: D_{3} \rightarrow D_{3}$ fixing f :

$$
\left\{\begin{array} { l }
{ \alpha (r) = r } \\
{ \alpha (f) = r f }
\end{array} \quad \left\{\begin{array}{l}
\beta(r)=r^{2} \\
\beta(f)=f
\end{array}\right.\right.
$$

I claim that:

- these both define automorphisms (check this!)
- these generate six different automorphisms, and thus $\langle\alpha, \beta\rangle=\operatorname{Aut}\left(D_{3}\right)$.

To determine what group this is isomorphic to, find these six automorphisms, and make a group presentation and/or multiplication table. Is it abelian?

Automorphisms of D_{3}

An automorphism can be thought of as a re-wiring of the Cayley diagram.

$r \stackrel{\alpha \beta}{\longmapsto} r^{2}$ $f \longmapsto r^{2} f$

$$
\begin{aligned}
& r \stackrel{\alpha^{2} \beta}{\longmapsto} r^{2} \\
& f \longmapsto r f
\end{aligned}
$$

Automorphisms of D_{3}

Here is the multiplication table and Cayley diagram of $\operatorname{Aut}\left(D_{3}\right)=\langle\alpha, \beta\rangle$.

	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
id	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	id	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	id	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	id	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

It is purely coincidence that $\operatorname{Aut}\left(D_{3}\right) \cong D_{3}$. For example, we've already seen that

$$
\operatorname{Aut}\left(\mathbb{Z}_{5}\right) \cong U(5) \cong \mathbb{Z}_{4}, \quad \operatorname{Aut}\left(\mathbb{Z}_{6}\right) \cong U(6) \cong \mathbb{Z}_{2}, \quad \operatorname{Aut}\left(\mathbb{Z}_{8}\right) \cong U(8) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Automorphisms of $V_{4}=\langle h, v\rangle$

The following permutations are both automorphisms:

$$
\begin{gathered}
h \stackrel{\alpha^{2}}{\longmapsto} h v \\
v \longmapsto h \\
h v \longmapsto v
\end{gathered}
$$

$$
\beta: h_{v}
$$

$h v$

$$
\begin{gathered}
h \stackrel{\alpha \beta}{\longmapsto} h \\
v \longmapsto h v \\
h v \longmapsto v
\end{gathered}
$$

and

$$
\begin{gathered}
h \stackrel{\alpha^{2} \beta}{\longmapsto} h v \\
v \longmapsto v \\
h v \longmapsto h
\end{gathered}
$$

Automorphisms of $V_{4}=\langle h, v\rangle$
Here is the multiplication table and Cayley diagram of $\operatorname{Aut}\left(V_{4}\right)=\langle\alpha, \beta\rangle \cong S_{3} \cong D_{3}$.

Note that α and β can be thought of as the permutations $h v$ and so $\operatorname{Aut}(G) \hookrightarrow \operatorname{Perm}(G) \cong S_{n}$ always holds.

The first isomorphism theorem

Fundamental homomorphism theorem (FHT)

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G / \operatorname{Ker}(\phi)$.

The FHT says that every homomorphism can be decomposed into two steps: (i) quotient out by the kernel, and then (ii) relabel the nodes via ϕ.

Proof

Construct an explicit map $i: G / \operatorname{Ker}(\phi) \rightarrow \operatorname{Im}(\phi)$ and prove that it is an isomorphism...

The first isomorphism theorem

Fundamental homomorphism theorem (FHT)

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G / \operatorname{Ker}(\phi)$.

Let's revist a familiar example to illustrate this. Consider a homomorphism:

$$
\phi: Q_{8} \longrightarrow V_{4}, \quad \phi(i)=h, \quad \phi(j)=v
$$

It is easy to check that $\operatorname{Ker}(\phi)=\langle-1\rangle \unlhd Q_{8}$.
The FHT says that this homomorphism can be done in two steps: (i) quotient by $\langle-1\rangle$, and then (ii) relabel the nodes accordingly.

A picture of the isomorphism $i: \mathbb{Z}_{12} \longrightarrow \mathbb{Z} /\langle 12\rangle$ (from the VGT website)

How to show two groups are isomorphic

The standard way to show $G \cong H$ is to construct an isomorphism $\phi: G \rightarrow H$.
When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that $G / N \cong H$. There are two approaches:
(i) Define a map $\phi: G / N \rightarrow H$ and prove that it is well-defined, a homomorphism, and a bijection.
(ii) Define a map $\phi: G \rightarrow H$ and prove that it is a homomorphism, a surjection (onto), and that $\operatorname{Ker} \phi=N$.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.
For example, each of the following are results that we will see very soon, for which (ii) works quite well:

- $\mathbb{Z} /\langle n\rangle \cong \mathbb{Z}_{n} ;$
- $\mathbb{Q}^{*} /\langle-1\rangle \cong \mathbb{Q}^{+}$;
- $A B / B \cong A /(A \cap B) \quad$ (assuming $A, B \triangleleft G)$;
- $G /(A \cap B) \cong(G / A) \times(G / B) \quad$ (assuming $G=A B)$.

The Second Isomorphism Theorem

Diamond isomorphism theorem

Let $H \leq G$, and $N \triangleleft N_{G}(H)$. Then
(i) The product $H N=\{h n \mid h \in H, n \in N\}$ is a subgroup of G.
(ii) The intersection $H \cap N$ is a normal subgroup of G.
(iii) The following quotient groups are isomorphic:

$$
H N / N \cong H /(H \cap N)
$$

Proof (sketch)

Define the following map

$$
\phi: H \longrightarrow H N / N, \quad \phi: h \longmapsto h N .
$$

If we can show:

1. ϕ is a homomorphism,
2. ϕ is surjective (onto),
3. $\operatorname{Ker} \phi=H \cap N$,
then the result will follow immediately from the FHT.

The Third Isomorphism Theorem

Freshman theorem

Consider a chain $N \leq H \leq G$ of normal subgroups of G. Then

1. The quotient H / N is a normal subgroup of G / N;
2. The following quotients are isomorphic:

$$
(G / N) /(H / N) \cong G / H .
$$

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

The Fourth Isomorphism Theorem

Correspondence theorem

Let $N \triangleleft G$. There is a $1-1$ correspondence between subgroups of G / N and subgroups of G that contain N. In particular, every subgroup of G / N has the form $\bar{A}:=A / N$ for some A satisfying $N \leq A \leq G$.

This means that the corresponding subgroup lattices are identical in structure.

Example

The quotient $Q_{8} /\langle-1\rangle$ is isomorphic to V_{4}. The subgroup lattices can be visualized by "collapsing" $\langle-1\rangle$ to the identity.

Correspondence theorem (full version)

Let $N \triangleleft G$. Then there is a bijection from the subgroups of G / N and subgroups of G that contain N. In particular, every subgroup of G / N has the form $\bar{A}:=A / N$ for some A satisfying $N \leq A \leq G$. Moreover, if $A, B \leq G$, then

1. $A \leq B$ if and only if $\bar{A} \leq \bar{B}$,
2. If $A \leq B$, then $[B: A]=[\bar{B}: \bar{A}]$,
3. $\overline{\langle A, B\rangle}=\langle\bar{A}, \bar{B}\rangle$,
4. $\overline{A \cap B}=\bar{A} \cap \bar{B}$,
5. $A \triangleleft G$ if and only if $\bar{A} \triangleleft \bar{G}$.

Example

