Lecture 1.2: Group actions

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

The symmetric group

Definition

The group of all permutations of $\{1, \ldots, n\}$ is the symmetric group, denoted S_{n}.

We can concisely describe permutations in cycle notation, e.g.,

Observation 1

Every permutation can be decomposed into a product of disjoint cycles, and disjoint cycles commute.

We usually don't write 1-cycles (fixed points). For example, in S_{10}, we can write

7

$$
\text { as } \quad(1465)(23)(8109) \text {. }
$$

By convention, we'll read cycles from right-to-left, like function composition. [Note. Many sources read left-to-right.]

The symmetric group

Remarks

- If σ is a k-cycle, then $|\sigma|=k$.
- If $\sigma=\sigma_{1} \cdots \sigma_{m}$, all disjoint, then $|\sigma|=\operatorname{lcm}\left(\left|\sigma_{1}\right|, \ldots,\left|\sigma_{m}\right|\right)$.
- A 2-cycle is called a transposition.
- Every cycle (and hence element of S_{n}) can be written as a product of transpositions:

$$
(123 \cdots k)=(1 k)(1 k-1) \cdots(13)(12) .
$$

- We say $\sigma \in S_{n}$ is even if it can be written as a product of an even number of transpositions, otherwise it is odd.

It is easy to check that the following is a homomorphism:

$$
f: S_{n} \longrightarrow\{1,-1\}, \quad f(\sigma)= \begin{cases}1 & \sigma \text { even } \\ -1 & \sigma \text { odd } .\end{cases}
$$

Define the alternating group to be $A_{n}:=\operatorname{ker} f$.

Proposition

If $n \geq 2$, then $\left[S_{n}: A_{n}\right]=2$. (Equivalently, f is onto.)

The symmetric group

Exercise

Let $\left(a_{1} a_{2} \cdots a_{k}\right) \in S_{n}$ be a k-cycle. Then

$$
\sigma\left(a_{1} a_{2} \cdots a_{k}\right) \sigma^{-1}=\left(\sigma a_{1} \sigma a_{2} \cdots \sigma a_{k}\right) .
$$

A good way to visual this is with a commutative diagram:

Note that no matter what σ is, $\sigma(12) \sigma^{-1}$ will be a transposition. (Why?)

Conjugacy and cycle type

Definition

Two elements $x, y \in G$ are conjugate if $x=\operatorname{gyg}^{-1}$ for some $g \in G$.

It is easy to show that conjugacy is an equivalence relation. The equivalence class containing $x \in G$ is called its conjugacy class, denoted $\mathrm{cl}_{G}(x)$.

Say that elements in S_{n} have the same cycle type if when written as a product of disjoint cycles, there are the same number of length- k cycles for each k.

We can write the cycle type of a permutation $\sigma \in S_{n}$ as a list $c_{1}, c_{2}, \ldots, c_{n}$, where c_{i} is the number of cycles of length i in σ.

Here is an example of some elements in S_{9} and their cycle types.

- (18) (5) (2 3) (4967) has cycle type 1,2,0,1.
- (184234967) has cycle type 0,0,0,0,0,0,0,0,1.
- id $=(1)(2)(3)(4)(5)(6)(7)(8)(9)$ has cycle type 9.

Proosition

Two elements $g, h \in S_{n}$ are conjugate if and only if they have the same cycle type.

As a corollary, $Z\left(S_{n}\right)=1$ for $n \geq 3$.

Group actions

Intuitively, a group action occurs when a group G naturally permutes a set S of objects.
This is best motivated with an example. Consider the size-7 set consisting of the following "binary squares."

$$
S=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}, \begin{array}{|ll}
0 & 1 \\
1 & 0 \\
\hline
\end{array}, \begin{array}{|ll}
1 & 0 \\
0 & 1 \\
\hline
\end{array}, \begin{array}{|ll}
1 & 1 \\
0 & 0 \\
\hline
\end{array}, \begin{array}{|ll}
0 & 1 \\
0 & 1 \\
\hline
\end{array}, \begin{array}{|ll|}
\hline 0 & 0 \\
1 & 1 \\
\hline
\end{array}, \begin{array}{|ll}
1 & 0 \\
1 & 0 \\
\hline
\end{array}\right\}
$$

The group $D_{4}=\langle r, f\rangle$ "acts on $S^{\prime \prime}$ as follows:

A "group switchboard"

Suppose we have a "switchboard" for G, with every element $g \in G$ having a "button."
If $a \in G$, then pressing the a-button rearranges the objects in our set S. In fact, it is a permutation of S; call it $\phi(a)$.

If $b \in G$, then pressing the b-button rearranges the objects in S a different way. Call this permutation $\phi(b)$.

The element $a b \in G$ also has a button. We require that pressing the $a b$-button yields the same result as pressing the a-button, followed by the b-button. That is,

$$
\phi(a b)=\phi(a) \phi(b), \quad \text { for all } a, b \in G .
$$

Let $\operatorname{Perm}(S)$ be the group of permutations of S. Thus, if $|S|=n$, then $\operatorname{Perm}(S) \cong S_{n}$.

Definition

A group G acts on a set S if there is a homomorphism $\phi: G \rightarrow \operatorname{Perm}(S)$.

A "group switchboard"

Returning to our binary square example, pressing the r-button and f-button permutes the set S as follows:

Observe how these permutations are encoded in the action diagram:

Left actions vs. right actions (an annoyance we can deal with)

As we've defined group actions, "pressing the a-button followed by the b-button should be the same as pressing the ab-button."

However, sometimes it has to be the same as "pressing the ba-button."
This is best seen by an example. Suppose our action is conjugation:
"Left group action"

$\phi(a) \phi(b)=\phi(b a)$
"Right group action"

$\phi(a) \phi(b)=\phi(a b)$

Some books forgo our " ϕ-notation" and use the following notation to distinguish left vs. right group actions:

$$
g .(h . s)=(g h) . s, \quad(s . g) \cdot h=s .(g h) .
$$

We'll usually keep the ϕ, and write $\phi(g) \phi(h) s=\phi(g h) s$ and $s \cdot \phi(g) \phi(h)=s \cdot \phi(g h)$. As with groups, the "dot" will be optional.

Left actions vs. right actions (an annoyance we can deal with)

Alternative definition (other textbooks)

A right group action is a mapping

$$
G \times S \longrightarrow S, \quad(a, s) \longmapsto s . a
$$

such that

- s. $(a b)=(s . a) . b$, for all $a, b \in G$ and $s \in S$
- $s .1=s$, for all $s \in S$.

A left group action can be defined similarly.
Pretty much all of the theorems for left actions hold for right actions.
Usually if there is a left action, there is a related right action. We will usually use right actions, and we will write

$$
s . \phi(g)
$$

for "the element of S that the permutation $\phi(g)$ sends s to," i.e., where pressing the g-button sends s.

If we have a left action, we'll write $\phi(g) . s$.

Cayley diagrams as action diagrams

Every Cayley diagram can be thought of as the action diagram of a particular (right) group action.

For example, consider the group $G=D_{4}=\langle r, f\rangle$ acting on itself. That is, $S=D_{4}=\left\{1, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.

Suppose that pressing the g-button on our "group switchboard" multiplies every element on the right by g.

Here is the action diagram:

We say that " G acts on itself by right-multiplication."

Orbits, stabilizers, and fixed points

Suppose G acts on a set S. Pick a configuration $s \in S$. We can ask two questions about it:
(i) What other states (in S) are reachable from s ? (We call this the orbit of s.)
(ii) What group elements (in G) fix s ? (We call this the stabilizer of s.)

Definition

Suppose that G acts on a set S (on the right) via $\phi: G \rightarrow \operatorname{Perm}(S)$.
(i) The orbit of $s \in S$ is the set

$$
\operatorname{Orb}(s)=\{s . \phi(g) \mid g \in G\} .
$$

(ii) The stabilizer of s in G is

$$
\operatorname{Stab}(s)=\{g \in G \mid s . \phi(g)=s\} .
$$

(iii) The fixed points of the action are the orbits of size 1 :

$$
\operatorname{Fix}(\phi)=\{s \in S \mid s . \phi(g)=s \text { for all } g \in G\} .
$$

Note that the orbits of ϕ are the connected components in the action diagram.

Orbits, stabilizers, and fixed points

Let's revisit our running example:

The orbits are the 3 connected components. There is only one fixed point of ϕ. The stabilizers are:

$$
\begin{array}{lll}
\operatorname{Stab}\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=D_{4}, & \left.\operatorname{Stab}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=\left\{1, r^{2}, r f, r^{3} f\right\}, & \left.\operatorname{Stab}\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]\right)=\{1, f\}, \\
& \operatorname{Stab}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left\{1, r^{2}, r f, r^{3} f\right\}, & \left.\operatorname{Stab}\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right)=\left\{1, r^{2} f\right\}, \\
& \operatorname{Stab}\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\{1, f\}, \\
& \left.\operatorname{Stab}\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right)=\left\{1, r^{2} f\right\} .
\end{array}
$$

Observations?

Orbits and stabilizers

Proposition

For any $s \in S$, the set $\operatorname{Stab}(s)$ is a subgroup of G.

Proof (outline)

To show $\operatorname{Stab}(s)$ is a group, we need to show three things:
(i) Contains the identity. That is, $s \cdot \phi(1)=s$.
(ii) Inverses exist. That is, if $s . \phi(g)=s$, then $s . \phi\left(g^{-1}\right)=s$.
(iii) Closure. That is, if $s \cdot \phi(g)=s$ and $s \cdot \phi(h)=s$, then $s \cdot \phi(g h)=s$.

You'll do this on the homework.

Remark

The kernel of the action ϕ is the set of all group elements that fix everything in S :

$$
\operatorname{Ker} \phi=\{g \in G \mid \phi(g)=1\}=\{g \in G \mid s . \phi(g)=s \text { for all } s \in S\} .
$$

Notice that

$$
\operatorname{Ker} \phi=\bigcap_{s \in S} \operatorname{Stab}(s) .
$$

The Orbit-Stabilizer Theorem

The following result is another one of the central results of group theory.

Orbit-Stabilizer theorem

For any group action $\phi: G \rightarrow \operatorname{Perm}(S)$, and any $s \in S$,

$$
|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G| .
$$

Proof

Since $\operatorname{Stab}(s)<G$, Lagrange's theorem tells us that

$$
\underbrace{[G: \operatorname{Stab}(s)]}_{\text {number of cosets }} \cdot \underbrace{|\operatorname{Stab}(s)|}_{\text {size of subgroup }}=|G| .
$$

Thus, it suffices to show that $|\operatorname{Orb}(s)|=[G: \operatorname{Stab}(s)]$.
Goal: Exhibit a bijection between elements of $\operatorname{Orb}(s)$, and right cosets of Stab(s).
That is, two elements in G send s to the same place iff they're in the same coset.

The Orbit-Stabilizer Theorem: $|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G|$

Proof (cont.)

Let's look at our previous example to get some intuition for why this should be true.
We are seeking a bijection between $\operatorname{Orb}(s)$, and the right cosets of $\operatorname{Stab}(s)$.
That is, two elements in G send s to the same place iff they're in the same coset.

$$
\text { Let } s=\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}
$$

$$
G=D_{4} \text { and } H=\langle f\rangle
$$

Then $\operatorname{Stab}(s)=\langle f\rangle$.

Partition of D_{4} by the right cosets of H :

Note that $s . \phi(g)=s . \phi(k)$ iff g and k are in the same right coset of H in G.

The Orbit-Stabilizer Theorem: $|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G|$

Proof (cont.)

Throughout, let $H=\operatorname{Stab}(s)$.
" \Rightarrow " If two elements send s to the same place, then they are in the same coset.
Suppose $g, k \in G$ both send s to the same element of S. This means:

$$
\begin{array}{rlr}
s . \phi(g)=s . \phi(k) & \Longrightarrow s . \phi(g) \phi(k)^{-1}=s \\
& \Longrightarrow s . & \\
& \Longrightarrow & \\
& \Longrightarrow & \\
& \Longrightarrow \quad g(g) \phi\left(k^{-1}\right)=s & \text { (i.e., } g k^{-1} \text { stabilizes s) } \\
& \Longrightarrow H g k^{-1}=H & \\
& \Longrightarrow H g=H k &
\end{array}
$$

" \Leftarrow " If two elements are in the same coset, then they send s to the same place.
Take two elements $g, k \in G$ in the same right coset of H. This means $H g=H k$.
This is the last line of the proof of the forward direction, above. We can change each \Longrightarrow into \Longleftrightarrow, and thus conclude that $s . \phi(g)=s . \phi(k)$.

If we have instead, a left group action, the proof carries through but using left cosets.

Groups acting on elements, subgroups, and cosets

It is frequently of interest to analyze the action of a group G on its elements, subgroups, or cosets of some fixed $H \leq G$.

Sometimes, the orbits and stabilizers of these actions are actually familiar algebraic objects.
Also, sometimes a deep theorem has a slick proof via a clever group action.
For example, we will see how Cayley's theorem (every group G is isomorphic to a group of permutations) follows immediately once we look at the correct action.

Here are common examples of group actions:
■ G acts on itself by right-multiplication (or left-multiplication).

- G acts on itself by conjugation.
- G acts on its subgroups by conjugation.
- G acts on the right-cosets of a fixed subgroup $H \leq G$ by right-multiplication.

For each of these, we'll analyze the orbits, stabilizers, and fixed points.

Groups acting on themselves by right-multiplication

We've seen how groups act on themselves by right-multiplication. While this action is boring (any Cayley diagram is an action diagram!), it leads to a slick proof of Cayley's theorem:

Every group is isomorphic to a group of permutations.

Cayley's theorem

If $|G|=n$, then there is an embedding $G \hookrightarrow S_{n}$.

Proof.

The group G acts on itself (that is, $S=G$) by right-multiplication:

$$
\phi: G \longrightarrow \operatorname{Perm}(S) \cong S_{n}, \quad \phi(g)=\text { the permutation that sends each } x \mapsto x g .
$$

There is only one orbit: $G=S$. The stabilizer of any $x \in G$ is just the identity element:

$$
\operatorname{Stab}(x)=\{g \in G \mid x g=x\}=\{1\} .
$$

Therefore, the kernel of this action is $\operatorname{Ker} \phi=\bigcap_{x \in G} \operatorname{Stab}(x)=\{1\}$.
Since $\operatorname{Ker} \phi=\{1\}$, the homomorphism ϕ is $1-1$.

Groups acting on themselves by conjugation
Another way a group G can act on itself (that is, $S=G$) is by conjugation:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } x \mapsto g^{-1} \times g .
$$

- The orbit of $x \in G$ is its conjugacy class:

$$
\operatorname{Orb}(x)=\{x \cdot \phi(g) \mid g \in G\}=\left\{g^{-1} \times g \mid g \in G\right\}=\mathrm{cl}_{G}(x) .
$$

- The stabilizer of x is the set of elements that commute with x; called its centralizer:

$$
\operatorname{Stab}(x)=\left\{g \in G \mid g^{-1} x g=x\right\}=\{g \in G \mid x g=g x\}:=C_{G}(x)
$$

- The fixed points of ϕ are precisely those in the center of G :

$$
\operatorname{Fix}(\phi)=\left\{x \in G \mid g^{-1} x g=x \text { for all } g \in G\right\}=Z(G)
$$

By the Orbit-Stabilizer theorem, $|G|=|\operatorname{Orb}(x)| \cdot|\operatorname{Stab}(x)|=\left|\mathrm{cl}_{G}(x)\right| \cdot\left|C_{G}(x)\right|$. Thus, we immediately get the following new result about conjugacy classes:

Theorem

For any $x \in G$, the size of the conjugacy class $\operatorname{cl}_{G}(x)$ divides the size of G.

The Class Equation

For any finite group G,

$$
|G|=|Z(G)|+\sum\left|\mathrm{cl}_{G}\left(x_{i}\right)\right|
$$

where the sum is taken over distinct conjugacy classes of size greater than 1 .

Groups acting on themselves by conjugation
As an example, consider the action of $G=D_{6}$ on itself by conjugation.

The orbits of the action are the conjugacy classes:

1	r	r^{2}	f	$r^{2} f$	$r^{4} f$
	r^{5}	r^{4}	$r f$	$r^{3} f$	$r^{5} f$

The fixed points of ϕ are the size- 1 conjugacy classes. These are the elements in the center: $Z\left(D_{6}\right)=\{1\} \cup\left\{r^{3}\right\}=\left\langle r^{3}\right\rangle$.

By the Orbit-Stabilizer theorem:

$$
|\operatorname{Stab}(x)|=\frac{\left|D_{6}\right|}{|\operatorname{Orb}(x)|}=\frac{12}{\left|\operatorname{cl}_{G}(x)\right|}
$$

The stabilizer subgroups are as follows:

- $\operatorname{Stab}(e)=\operatorname{Stab}\left(r^{3}\right)=D_{6}$,
- $\operatorname{Stab}(r)=\operatorname{Stab}\left(r^{2}\right)=\operatorname{Stab}\left(r^{4}\right)=\operatorname{Stab}\left(r^{5}\right)=\langle r\rangle=C_{6}$,
- $\operatorname{Stab}(f)=\left\{e, r^{3}, f, r^{3} f\right\}=\left\langle r^{3}, f\right\rangle$,
- $\operatorname{Stab}(r f)=\left\{e, r^{3}, r f, r^{4} f\right\}=\left\langle r^{3}, r f\right\rangle$,
$\square \operatorname{Stab}\left(r^{i} f\right)=\left\{e, r^{3}, r^{i} f, r^{i} f\right\}=\left\langle r^{3}, r^{i} f\right\rangle$.

Groups acting on subgroups by conjugation

Let $G=D_{3}$, and let S be the set of proper subgroups of G :

$$
S=\left\{\langle 1\rangle,\langle r\rangle,\langle f\rangle,\langle r f\rangle,\left\langle r^{2} f\right\rangle\right\} .
$$

There is a right group action of $D_{3}=\langle r, f\rangle$ on S by conjugation:

$$
\tau: D_{3} \longrightarrow \operatorname{Perm}(S), \quad \tau(g)=\text { the permutation that sends each } H \text { to } g^{-1} \mathrm{Hg} .
$$

Groups acting on subgroups by conjugation

More generally, any group G acts on its set S of subgroups by conjugation:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \text { to } g^{-1} \mathrm{Hg} .
$$

This is a right action, but there is an associated left action: $H \mapsto \mathrm{gHg}^{-1}$.
Let $H \leq G$ be an element of S.

- The orbit of H consists of all conjugate subgroups:

$$
\operatorname{Orb}(H)=\left\{g^{-1} H g \mid g \in G\right\} .
$$

- The stabilizer of H is the normalizer of H in G :

$$
\operatorname{Stab}(H)=\left\{g \in G \mid g^{-1} H g=H\right\}=N_{G}(H)
$$

- The fixed points of ϕ are precisely the normal subgroups of G :

$$
\operatorname{Fix}(\phi)=\left\{H \leq G \mid g^{-1} H g=H \text { for all } g \in G\right\} .
$$

- The kernel of this action is G iff every subgroup of G is normal. In this case, ϕ is the trivial homomorphism: pressing the g-button fixes (i.e., normalizes) every subgroup.

Groups acting on cosets of H by right-multiplication

Fix a subgroup $H \leq G$. Then G acts on its right cosets by right-multiplication:

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } H \times \text { to } H \times g .
$$

Let $H x$ be an element of $S=G / H$ (the right cosets of H).

- There is only one orbit. For example, given two cosets $H x$ and $H y$,

$$
\phi\left(x^{-1} y\right) \text { sends } H x \longmapsto H x\left(x^{-1} y\right)=H y .
$$

- The stabilizer of $H x$ is the conjugate subgroup $x^{-1} H x$:

$$
\operatorname{Stab}(H x)=\{g \in G \mid H x g=H x\}=\left\{g \in G \mid H x g x^{-1}=H\right\}=x^{-1} H x .
$$

- Assuming $H \neq G$, there are no fixed points of ϕ. The only orbit has size $[G: H]>1$.
- The kernel of this action is the intersection of all conjugate subgroups of H :

$$
\operatorname{Ker} \phi=\bigcap_{x \in G} x^{-1} H x
$$

Notice that $\langle 1\rangle \leq \operatorname{Ker} \phi \leq H$, and $\operatorname{Ker} \phi=H$ iff $H \triangleleft G$.

Fixed points of group actions

Recall the subtle difference between fixed points and stabilizers:

- The fixed points of an action $\phi: G \rightarrow \operatorname{Perm}(S)$ are the elements of S fixed by every $g \in G$.
- The stabilizer of an element $s \in S$ is the set of elements of G that fix s.

Lemma

If a group G of prime order p acts on a set S via $\phi: G \rightarrow \operatorname{Perm}(S)$, then

$$
|\operatorname{Fix}(\phi)| \equiv|S| \quad(\bmod p) .
$$

Proof (sketch)

Cauchy's Theorem

Cauchy's theorem

If p is a prime number dividing $|G|$, then G has an element g of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is 1 , i.e.,

$$
\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in P \quad \text { iff } \quad x_{1} x_{2} \cdots x_{p}=1
$$

Observe that $|P|=|G|^{p-1}$. (We can choose x_{1}, \ldots, x_{p-1} freely; then x_{p} is forced.)
The group \mathbb{Z}_{p} acts on P by cyclic shift:

$$
\phi: \mathbb{Z}_{p} \longrightarrow \operatorname{Perm}(P), \quad\left(x_{1}, x_{2}, \ldots, x_{p}\right) \stackrel{\phi(1)}{\longrightarrow}\left(x_{2}, x_{3} \ldots, x_{p}, x_{1}\right) .
$$

(This is because if $x_{1} x_{2} \cdots x_{p}=1$, then $x_{2} x_{3} \cdots x_{p} x_{1}=1$ as well.)
The elements of P are partitioned into orbits. By the orbit-stabilizer theorem, $|\operatorname{Orb}(s)|=\left[\mathbb{Z}_{p}: \operatorname{Stab}(s)\right]$, which divides $\left|\mathbb{Z}_{p}\right|=p$. Thus, $|\operatorname{Orb}(s)|=1$ or p.

Observe that the only way that an orbit of $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ could have size 1 is if $x_{1}=x_{2}=\cdots=x_{p}$.

Cauchy's Theorem

Proof (cont.)
Clearly, $(1, \ldots, 1) \in P$, and the orbit containing it has size 1 .
Excluding $(1, \ldots, 1)$, there are $|G|^{p-1}-1$ other elements in P, and these are partitioned into orbits of size 1 or p.

Since $p \nmid|G|^{p-1}-1$, there must be some other orbit of size 1 .
Thus, there is some $(x, \ldots, x) \in P$, with $x \neq 1$ such that $x^{p}=1$.

Corollary

If p is a prime number dividing $|G|$, then G has a subgroup of order p.

Note that just by using the theory of group actions, and the orbit-stabilzer theorem, we have already proven:

- Cayley's theorem: Every group G is isomorphic to a group of permutations.
- The size of a conjugacy class divides the size of G.
- Cauchy's theorem: If p divides $|G|$, then G has an element of order p.

Application of group actions: Classification of groups of order 6

By Cauchy's theorem, every group of order 6 must have an element a of order 2, and an element b of order 3 .

Clearly, $G=\langle a, b\rangle$ for two such elements. Thus, G must have a Cayley diagram that looks like the following:

It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

$$
C_{6} \cong C_{2} \times C_{3}
$$

Application of group actions: Conjugacy in S_{n}
A group G is simple if its only normal subgroups are 1 and G.

Proposition (proofs will be done on the board)

1. If $n \geq 5$, then all 3 -cycles are conjugate in A_{n}.
2. If $n \geq 3$, then A_{n} is generated by 3 -cycles.
3. If $n \neq 4$, then A_{n} is simple.

The following Cayley diagram for A_{4} shows why it is not simple.

$$
\begin{array}{ll}
a=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) & x=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right) \\
b=\left(\begin{array}{lll}
1 & 3 & 4
\end{array}\right) & y=\left(\begin{array}{lll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right) \\
c=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) & z=\left(\begin{array}{lll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
d=\left(\begin{array}{lll}
2 & 4 & 3
\end{array}\right) &
\end{array}
$$

