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Some context

Once the study of group theory began in the 19th century, a natural research question was
to classify all groups.

Of course, this is too difficult in general, but for certain cases, much is known. Later, we’ll
establish the following fact, which allows us to completely classify all finite abelian groups.

Proposition

Znm
∼= Zn × Zm if and only if gcd(n,m) = 1.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

· · ·

(0,0)
(1,1)

(2,2)

(3,0)

(0,1)

(1,2)
(2,0)

(3,1)

(0,2)

(1,0)

(2,1)

(3,2)

Z4 × Z3
∼= Z12

Finite non-abelian groups are much harder. The Sylow Theorems, developed by Norwegian
mathematician Peter Sylow (1832–1918), provide insight into their structure.
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The Fundamental Theorem of Finite Abelian Groups

Classification theorem (by “prime powers”)

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some
integers n1, n2, . . . , nm,

A ∼= Zn1 × Zn2 × · · · × Znm ,

where each ni is a prime power, i.e., ni = p
di
i , where pi is prime and di ∈ N.

Example

Up to isomorphism, there are 6 abelian groups of order 200 = 23 · 52:
Z8 × Z25 Z8 × Z5 × Z5

Z2 × Z4 × Z25 Z2 × Z4 × Z5 × Z5

Z2 × Z2 × Z2 × Z25 Z2 × Z2 × Z2 × Z5 × Z5

Instead of proving this statement for groups, we’ll prove a much more general statement for
R-modules over a PID, later in the class.

The result above is the special case of the theorem for Z-modules (=finite abelan groups).

The special case for F-modules (=vector spaces) leads to the Jordan canonical form.

M. Macauley (Clemson) Lecture 1.3: The Sylow theorems Math 8510, Abstract Algebra I 3 / 33

mailto:macaule@clemson.edu


The Fundamental Theorem of Finite Abelian Groups (alternate form)

Classification theorem (by “elementary divisors”)

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some
integers k1, k2, . . . , km,

A ∼= Zk1
× Zk2

× · · · × Zkm .

where each ki is a multiple of ki+1.

Example

Up to isomorphism, there are 6 abelian groups of order 200 = 23 · 52:

by “prime-powers” by “elementary divisors”
Z8 × Z25 Z200

Z4 × Z2 × Z25 Z100 × Z2

Z2 × Z2 × Z2 × Z25 Z50 × Z2 × Z2

Z8 × Z5 × Z5 Z40 × Z5

Z4 × Z2 × Z5 × Z5 Z20 × Z10

Z2 × Z2 × Z2 × Z5 × Z5 Z10 × Z10 × Z2

We will also prove a much more general statement for modules later in the class.

The result above is the special case of the theorem for Z-modules (=finite abelan groups).

The special case for F-modules (=vector spaces) leads to the rational canonical form.
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The Fundamental Theorem of Finitely Generated Abelian Groups

Just for fun, here is the classification theorem for all finitely generated abelian groups. Note
that it is not much different.

Theorem

Every finitely generated abelian group A is isomorphic to a direct product of cyclic groups,
i.e., for some integers n1, n2, . . . , nm,

A ∼= Z× · · · × Z︸ ︷︷ ︸
k copies

×Zn1 × Zn2 × · · · × Znm ,

where each ni is a prime power, i.e., ni = p
di
i , where pi is prime and di ∈ N.

In other words, A is isomorphic to a (multiplicative) group with presentation:

A = 〈a1, . . . , ak , r1, . . . , rm | rn1
1 = · · · = rnm

m = 1, . . .〉 .

In summary, abelian groups are relatively easy to understand.

In contrast, nonabelian groups are more mysterious and complicated. The Sylow Theorems
which will help us better understand the structure of finite nonabelian groups.
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p-groups

Before we introduce the Sylow theorems, we need to better understand p-groups.

A p-group is any group of order pn. For example, C1, C4, V4, D4 and Q8 are all 2-groups.

p-group Lemma

If a p-group G acts on a set S via φ : G → Perm(S), then

|Fix(φ)| ≡p |S | .

Proof (sketch)

Suppose |G | = pn.

By the Orbit-Stabilizer theorem, the only
possible orbit sizes are 1, p, p2, . . . , pn.

Fix(φ) non-fixed points all in size-pk orbits

p elts

···
p3 elts

···
pi elts

p elts

··
·

p6 elts
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p-groups

Normalizer lemma, Part 1

If H is a p-subgroup of G , then

[NG (H) : H] ≡p [G : H] .

Proof

Let S = G/H = {Hx | x ∈ G}. The group H acts on S by right-multiplication, via
φ : H → Perm(S), where

φ(h) = the permutation sending each Hx to Hxh.

The fixed points of φ are the cosets Hx in the normalizer NG (H):

Hxh = Hx , ∀h ∈ H ⇐⇒ Hxhx−1 = H, ∀h ∈ H
⇐⇒ xhx−1 ∈ H, ∀h ∈ H
⇐⇒ x ∈ NG (H) .

Therefore, |Fix(φ)| = [NG (H) : H], and |S | = [G : H]. By our p-group Lemma,

|Fix(φ)| ≡p |S | =⇒ [NG (H) : H] ≡p [G : H] . �
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p-groups

Here is a picture of the action of the p-subgroup H on the set S = G/H, from the proof of
the Normalizer Lemma.

NG (H)

S = G/H = set of right cosets of H in G

The fixed points are precisely

the cosets in NG (H)
Orbits of size > 1 are of various sizes
dividing |H|, but all lie outside NG (H)

H

Ha1

Ha2

Ha3

Hg1

Hg2Hg3

Hg7

Hg8

Hg9

Hg10

Hg11Hg12

Hg13

Hg14

Hg1

Hg4

Hg5Hg6
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p-subgroups

The following result will be useful in proving the first Sylow theorem.

The Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the index
[NG (H) : H] is a multiple of p.

H Hx2 Hxk Hy1

Hy2

Hy3

...

. . .

[NG (H) : H] > 1 cosets of H (a multiple of p)

[G : H] cosets of H (a multiple of p)

H � NG (H) ≤ G

Conclusions:

H = NG (H) is impossible!

pi+1 divides |NG (H)|.

M. Macauley (Clemson) Lecture 1.3: The Sylow theorems Math 8510, Abstract Algebra I 9 / 33

mailto:macaule@clemson.edu


Proof of the normalizer lemma

The Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the index
[NG (H) : H] is a multiple of p.

Proof

Since H C NG (H), we can create the quotient map

q : NG (H) −→ NG (H)/H , q : g 7−→ gH .

The size of the quotient group is [NG (H) : H], the number of cosets of H in NG (H).

By The Normalizer lemma Part 1, [NG (H) : H] ≡p [G : H]. By Lagrange’s theorem,

[NG (H) : H] ≡p [G : H] =
|G |
|H|

=
pnm

pi
= pn−i m ≡p 0 .

Therefore, [NG (H) : H] is a multiple of p, so NG (H) must be strictly larger than H. �

M. Macauley (Clemson) Lecture 1.3: The Sylow theorems Math 8510, Abstract Algebra I 10 / 33

mailto:macaule@clemson.edu


p-subgroups

Notational convention

Througout, G will be a group of order |G | = pn ·m, with p - m. That is, pn is the highest
power of p dividing |G |.

Definition

A p-group is a group of order pn.

A p-subgroup of G is a subgroup of order pk ≤ pn.

A Sylow p-subgroup of G is a subgroup of order pn.

There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: There are strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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Our unknown group of order 200

Throughout our lectures on the Sylow theorems, we will have a running example, a “mystery
group” M of order 200.

• 1

??

?

?

?
?

?

?

?

?

?
?

|M|= 200

Using only the fact that |M| = 200, we will unconver as much about the structure of M as
we can.

We actually already know a little bit. Recall Cauchy’s theorem:

Cauchy’s theorem

If p is a prime number dividing |G |, then G has an element g of order p.
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Our mystery group of order 200

Since our mystery group M has order |M| = 23 · 52 = 200, Cauchy’s theorem tells us that:

M has an element a of order 2;

M has an element b of order 5;

Also, by Lagrange’s theorem, 〈a〉 ∩ 〈b〉 = {1}.

?

?

?

1

?

?

?

?

?

?

?

|M|= 200

•

•
b

•b2

•
b3

•
b4

•a

|a|= 2
|b|= 5
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The 1st Sylow Theorem: Existence of p-subgroups

First Sylow Theorem

G has a subgroup of order pk , for each pk dividing |G |. Also, every p-subgroup with fewer
than pn elements sits inside one of the larger p-subgroups.

The First Sylow Theorem is in a sense, a generalization of Cauchy’s theorem. Here is a
comparison:

Cauchy’s Theorem First Sylow Theorem

If p divides |G |, then . . . If pk divides |G |, then . . .

There is a subgroup of order p There is a subgroup of order pk

which is cyclic and has no non-trivial proper subgroups. which has subgroups of order 1, p, p2 . . . pk .

G contains an element of order p G might not contain an element of order pk .
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The 1st Sylow Theorem: Existence of p-subgroups

Proof

The trivial subgroup {1} has order p0 = 1.

Big idea: Suppose we’re given a subgroup H < G of order pi < pn. We will construct a

subgroup H′ of order pi+1.

By the normalizer lemma, H � NG (H), and the order of the quotient group NG (H)/H is a
multiple of p.

By Cauchy’s Theorem, NG (H)/H contains an element (a coset!) of order p. Call this
element aH. Note that 〈aH〉 is cyclic of order p.

Claim: The preimage of 〈aH〉 under the quotient q : NG (H)→ NG (H)/H is the subgroup H′

we seek.

The preimages q−1(H), q−1(aH), q−1(a2H), . . . , q−1(ap−1H) are all distinct cosets of H in
NG (H), each of size pi .

Thus, the preimage H′ = q−1(〈aH〉) contains p · |H| = pi+1 elements. �
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The 1st Sylow Theorem: Existence of p-subgroups

Here is a picture of how we found the group H′ = q−1(〈aH〉).

NG (H)

g1H

g2H

g3H

g4H

· ·
·

H

aH

a2Ha3H

•

•

•

q

H′

NG (H)

H

• g1

• g2

• g3

• g4

· ·
·

•

H
•

aH

•
a2H

•
a3H

··
·

〈aH〉

q−1

Since |H| = pi , the subgroup H′ =

p−1⋃
k=0

ak H contains p · |H| = pi+1 elements.
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Our unknown group of order 200

We now know a little bit more about the structure of our mystery group of order
|M| = 23 · 52:

M has a 2-subgroup P2 of order 23 = 8;

M has a 5-subgroup P5 of order 25 = 52;

Each of these subgroups contains a nested chain of p-subgroups, down to the trivial
group, {1}.

?

?

1

?

?

?

|M|= 200

•

•
b

•b2

•
b3

•
b4

•a

|a|= 2

|b|= 5

25

4

8
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The 2nd Sylow Theorem: Relationship among p-subgroups

Let Sylp(G) denote the set of Sylow p-subgroups of G .

Second Sylow Theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).

Proof

Let H < G be any Sylow p-subgroup of G , and let S = G/H = {Hg | g ∈ G}, the set of
right cosets of H.

Pick any other Sylow p-subgroup K of G . (If there is none, the result is trivial.)

The group K acts on S by right-multiplication, via φ : K → Perm(S), where

φ(k) = the permutation sending each Hg to Hgk.
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The 2nd Sylow Theorem: All Sylow p-subgroups are conjugate

Proof

A fixed point of φ is a coset Hg ∈ S such that

Hgk = Hg , ∀k ∈ K ⇐⇒ Hgkg−1 = H , ∀k ∈ K
⇐⇒ gkg−1 ∈ H , ∀k ∈ K
⇐⇒ gKg−1 ⊂ H
⇐⇒ gKg−1 = H .

Thus, if φ has a fixed point Hg , then H and K are conjugate by g , and we’re done!

All we need to do is show that |Fix(φ)| 6≡p 0.

By the p-group Lemma, |Fix(φ)| ≡p |S|. Recall that |S | = [G : H].

Since H is a Sylow p-subgroup, |H| = pn. By Lagrange’s Theorem,

|S | = [G : H] =
|G |
|H|

=
pnm

pn
= m, p - m .

Therefore, |Fix(φ)| ≡p m 6≡p 0. �
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Our unknown group of order 200

We now know even more about the structure of our mystery group M, of order |M| = 23 · 52:

If M has any other Sylow 2-subgroup, it is isomorphic to P2;

If M has any other Sylow 5-subgroup, it is isomorphic to P5.

?

1

?

?

?

|M|= 200

•

•
b

•b2

•
b3

•
b4

• a

•

|a|= 2

|b|= 5

25

4
8

If any other Sylow
2-subgroup exists,
it is isomorphic to

the first
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The 3rd Sylow Theorem: Number of p-subgroups

Third Sylow Theorem

Let np be the number of Sylow p-subgroups of G . Then

np divides |G | and np ≡p 1 .

(Note that together, these imply that np | m, where |G | = pn ·m.)

Proof

The group G acts on S = Sylp(G) by conjugation, via φ : G → Perm(S), where

φ(g) = the permutation sending each H to g−1Hg .

By the Second Sylow Theorem, all Sylow p-subgroups are conjugate! Thus there is only one
orbit, Orb(H), of size np = |S |.

By the Orbit-Stabilizer Theorem,

|Orb(H)|︸ ︷︷ ︸
=np

·| Stab(H)| = |G | =⇒ np divides |G | .
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The 3rd Sylow Theorem: Number of p-subgroups

Proof (cont.)

Now, pick any H ∈ Sylp(G) = S . The group H acts on S by conjugation, via
θ : H → Perm(S), where

θ(h) = the permutation sending each K to h−1Kh.

Let K ∈ Fix(θ). Then K ≤ G is a Sylow p-subgroup satisfying

h−1Kh = K , ∀h ∈ H ⇐⇒ H ≤ NG (K) ≤ G .

We know that:

H and K are Sylow p-subgroups of G , but also of NG (K).

Thus, H and K are conjugate in NG (K). (2nd Sylow Thm.)

K C NG (K), thus the only conjugate of K in NG (K) is itself.

Thus, K = H. That is, Fix(θ) = {H} contains only 1 element.

By the p-group Lemma, np := |S| ≡p |Fix(θ)| = 1. �
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Summary of the proofs of the Sylow Theorems

For the 1st Sylow Theorem, we started with H = {1}, and inductively created larger
subgroups of size p, p2, . . . , pn.

For the 2nd and 3rd Sylow Theorems, we used a clever group action and then applied one or
both of the following:

(i) Orbit-Stabilizer Theorem. If G acts on S , then |Orb(s)|·| Stab(s)| = |G |.
(ii) p-group Lemma. If a p-group acts on S , then |S| ≡p |Fix(φ)|.

To summarize, we used:

S2 The action of K ∈ Sylp(G) on S = G/H by right multiplication for some other
H ∈ Sylp(G).

S3a The action of G on S = Sylp(G), by conjugation.

S3b The action of H ∈ Sylp(G) on S = Sylp(G), by conjugation.
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Summary of the proofs of the Sylow Theorems

Just for fun, the following is the “proof” of all 3 Sylow theorems, from Robin A. Wilson’s
book Finite Simple Groups.
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Our unknown group of order 200

We now know a little bit more about the structure of our mystery group M, of order
|M| = 23 · 52 = 200:

n5 | 8, thus n5 ∈ {1, 2, 4, 8}. But n5 ≡5 1, so n5 = 1.

n2 | 25 and is odd. Thus n2 ∈ {1, 5, 25}.
We conclude that M has a unique (and hence normal) Sylow 5-subgroup P5 (of order
52 = 25), and either 1, 5, or 25 Sylow 2-subgroups (of order 23 = 8).

?

1

?

?

|M|= 200 The only Sylow
5-subgroup is normal

There may be other
Sylow 2-subgroups

•

•
b

•b2

•
b3

•
b4

•a

|a|= 2

|b|= 5

25

4

8
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Our unknown group of order 200

?

1

?

?

|M|= 200 The only Sylow
5-subgroup is normal

There may be other
Sylow 2-subgroups

•

•
b

•b2

•
b3

•
b4

•a

|a|= 2

|b|= 5

25

4

8

Suppose M has a subgroup isomorphic to D4.

This would be a Sylow 2-subgroup. Since all of them are conjugate, M cannot contain a
subgroup isomorphic to Q8, C4 × C2, or C8!

In particular, M cannot even contain an element of order 8. (Why?)
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Simple groups and the Sylow theorems

Definition

A group G is simple if its only normal subgroups are G and 〈e〉.

Since all Sylow p-subgroups are conjugate, the following result is straightforward:

Proposition

A Sylow p-subgroup is normal in G if and only if it is the unique Sylow p-subgroup (that is,
if np = 1).

The Sylow theorems are very useful for establishing statements like:

There are no simple groups of order k (for some k).

To do this, we usually just need to show that np = 1 for some p dividing |G |.

Since we established n5 = 1 for our running example of a group of size |M| = 200 = 23 · 52,
there are no simple groups of order 200.
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An easy example

Tip

When trying to show that np = 1, it’s usually more helpful to analyze the largest primes first.

Proposition

There are no simple groups of order 84.

Proof

Since |G | = 84 = 22 · 3 · 7, the Third Sylow Theorem tells us:

n7 divides 22 · 3 = 12 (so n7 ∈ {1, 2, 3, 4, 6, 12})
n7 ≡7 1.

The only possibility is that n7 = 1, so the Sylow 7-subgroup must be normal. �

Observe why it is beneficial to use the largest prime first:

n3 divides 22 · 7 = 28 and n3 ≡3 1. Thus n3 ∈ {1, 2, 4, 7, 14, 28}.
n2 divides 3 · 7 = 21 and n2 ≡2 1. Thus n2 ∈ {1, 3, 7, 21}.
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A harder example

Proposition

There are no simple groups of order 351.

Proof

Since |G | = 351 = 33 · 13, the Third Sylow Theorem tells us:

n13 divides 33 = 27 (so n13 ∈ {1, 3, 9, 27})
n13 ≡13 1.

The only possibilies are n13 = 1 or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order 33 = 27.
Therefore, P ∩ Q = {1}.

Suppose n13 = 27. Every Sylow 13-subgroup contains 12 non-identity elements, and so G
must contain 27 · 12 = 324 elements of order 13.

This leaves 351− 324 = 27 elements in G not of order 13. Thus, G contains only one Sylow
3-subgroup (i.e., n3 = 1) and so G cannot be simple. �
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The hardest example

Proposition

If H � G and |G | does not divide [G : H]!, then G cannot be simple.

Proof

Let G act on the right cosets of H (i.e., S = G/H) by right-multiplication:

φ : G −→ Perm(S) ∼= Sn , φ(g) = the permutation that sends each Hx to Hxg .

Recall that the kernel of φ is the intersection of all conjugate subgroups of H:

Ker φ =
⋂

x∈G

x−1Hx .

Notice that 〈e〉 ≤ Ker φ ≤ H � G , and Ker φ C G .

If Ker φ = 〈e〉 then φ : G ↪→ Sn is an injective. But this is impossible because |G | does not
divide |Sn| = [G : H]!. �

Corollary

There are no simple groups of order 24.
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Theorem (classification of finite simple groups)

Every finite simple group is isomorphic to one of the following groups:

A cyclic group Zp , with p prime;

An alternating group An, with n ≥ 5;

A Lie-type Chevalley group: PSL(n, q), PSU(n, q), PsP(2n, p), and PΩε(n, q);

A Lie-type group (twisted Chevalley group or the Tits group): D4(q), E6(q), E7(q),
E8(q), F4(q), 2F4(2n)′, G2(q), 2G2(3n), 2B(2n);

One of 26 exceptional “sporadic groups.”

The two largest sporadic groups are the:

“baby monster group” B, which has order

|B| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 ≈ 4.15× 1033;

“monster group” M, which has order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8.08× 1053.

The proof of this classification theorem is spread across ≈ 15,000 pages in ≈ 500 journal
articles by over 100 authors, published between 1955 and 2004.
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4 089 470 473
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The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

An
1 2 3 n

Bn
1 2 3 n

〈

Cn
1 2 3 n

〉

Dn
3 4 n

1

2

E6,7,8
1 2 3 5 6 7 8

4

F4
1 2 3 4

〉

G2
1 2

〉

Alternating Groups
Classical Chevalley Groups
Chevalley Groups
Classical Steinberg Groups
Steinberg Groups
Suzuki Groups
Ree Groups and Tits Group∗

Sporadic Groups
Cyclic Groups

Symbol

Order‡

Alternates†

∗The Tits group F2
4(2)′ is not a group of Lie type,

but is the (index 2) commutator subgroup of F2
4(2).

It is usually given honorary Lie type status.

†For sporadic groups and families, alternate names
in the upper left are other names by which they
may be known. For specific non-sporadic groups
these are used to indicate isomorphims. All such
isomorphisms appear on the table except the fam-
ily Bn(2m) ∼= Cn(2m).

‡Finite simple groups are determined by their order
with the following exceptions:

Bn(q) and Cn(q) for q odd, n > 2;
A8

∼= A3(2) and A2(4) of order 20160.

The groups starting on the second row are the clas-
sical groups. The sporadic suzuki group is unrelated
to the families of Suzuki groups.
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Finite Simple Group (of Order Two), by The Klein FourTM
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