Lecture 1.3: The Sylow theorems

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

Some context

Once the study of group theory began in the 19th century, a natural research question was to classify all groups.

Of course, this is too difficult in general, but for certain cases, much is known. Later, we'll establish the following fact, which allows us to completely classify all finite abelian groups.

Proposition

$\mathbb{Z}_{n m} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ if and only if $\operatorname{gcd}(n, m)=1$.

Finite non-abelian groups are much harder. The Sylow Theorems, developed by Norwegian mathematician Peter Sylow (1832-1918), provide insight into their structure.

The Fundamental Theorem of Finite Abelian Groups

Classification theorem (by "prime powers")

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some integers $n_{1}, n_{2}, \ldots, n_{m}$,

$$
A \cong \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{m}}
$$

where each n_{i} is a prime power, i.e., $n_{i}=p_{i}^{d_{i}}$, where p_{i} is prime and $d_{i} \in \mathbb{N}$.

Example

Up to isomorphism, there are 6 abelian groups of order $200=2^{3} \cdot 5^{2}$:

$$
\begin{array}{ll}
\mathbb{Z}_{8} \times \mathbb{Z}_{25} & \mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{25} & \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25} & \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
\end{array}
$$

Instead of proving this statement for groups, we'll prove a much more general statement for R-modules over a PID, later in the class.

The result above is the special case of the theorem for \mathbb{Z}-modules (=finite abelan groups).
The special case for \mathbb{F}-modules (=vector spaces) leads to the Jordan canonical form.

The Fundamental Theorem of Finite Abelian Groups (alternate form)

Classification theorem (by "elementary divisors")

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some integers $k_{1}, k_{2}, \ldots, k_{m}$,

$$
A \cong \mathbb{Z}_{k_{1}} \times \mathbb{Z}_{k_{2}} \times \cdots \times \mathbb{Z}_{k_{m}} .
$$

where each k_{i} is a multiple of k_{i+1}.

Example

Up to isomorphism, there are 6 abelian groups of order $200=2^{3} \cdot 5^{2}$:

by "prime-powers"	by "elementary divisors"
$\mathbb{Z}_{8} \times \mathbb{Z}_{25}$	\mathbb{Z}_{200}
$\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$	$\mathbb{Z}_{100} \times \mathbb{Z}_{2}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$	$\mathbb{Z}_{50} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
$\mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$	$\mathbb{Z}_{40} \times \mathbb{Z}_{5}$
$\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$	$\mathbb{Z}_{20} \times \mathbb{Z}_{10}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$	$\mathbb{Z}_{10} \times \mathbb{Z}_{10} \times \mathbb{Z}_{2}$

We will also prove a much more general statement for modules later in the class.
The result above is the special case of the theorem for \mathbb{Z}-modules (=finite abelan groups).
The special case for \mathbb{F}-modules (=vector spaces) leads to the rational canonical form.

The Fundamental Theorem of Finitely Generated Abelian Groups

Just for fun, here is the classification theorem for all finitely generated abelian groups. Note that it is not much different.

Theorem

Every finitely generated abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some integers $n_{1}, n_{2}, \ldots, n_{m}$,

$$
A \cong \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_{k \text { copies }} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{m}}
$$

where each n_{i} is a prime power, i.e., $n_{i}=p_{i}^{d_{i}}$, where p_{i} is prime and $d_{i} \in \mathbb{N}$.

In other words, A is isomorphic to a (multiplicative) group with presentation:

$$
A=\left\langle a_{1}, \ldots, a_{k}, r_{1}, \ldots, r_{m} \mid r_{1}^{n_{1}}=\cdots=r_{m}^{n_{m}}=1, \ldots\right\rangle .
$$

In summary, abelian groups are relatively easy to understand.
In contrast, nonabelian groups are more mysterious and complicated. The Sylow Theorems which will help us better understand the structure of finite nonabelian groups.

p-groups

Before we introduce the Sylow theorems, we need to better understand p-groups.
A p-group is any group of order p^{n}. For example, $C_{1}, C_{4}, V_{4}, D_{4}$ and Q_{8} are all 2-groups.

p-group Lemma

If a p-group G acts on a set S via $\phi: G \rightarrow \operatorname{Perm}(S)$, then

$$
|\operatorname{Fix}(\phi)| \equiv_{p}|S| .
$$

Proof (sketch)

p-groups

Normalizer lemma, Part 1
If H is a p-subgroup of G, then

$$
\left[N_{G}(H): H\right] \equiv_{p}[G: H] .
$$

Proof

Let $S=G / H=\{H x \mid x \in G\}$. The group H acts on S by right-multiplication, via $\phi: H \rightarrow \operatorname{Perm}(S)$, where

$$
\phi(h)=\text { the permutation sending each } H \times \text { to } H \times h .
$$

The fixed points of ϕ are the cosets $H x$ in the normalizer $N_{G}(H)$:

$$
\begin{aligned}
H \times h=H x, \quad \forall h \in H \quad & \Longleftrightarrow \quad H x h x^{-1}=H, \quad \forall h \in H \\
& \Longleftrightarrow \quad x h x^{-1} \in H, \quad \forall h \in H \\
& \Longleftrightarrow \quad x \in N_{G}(H) .
\end{aligned}
$$

Therefore, $|\operatorname{Fix}(\phi)|=\left[N_{G}(H): H\right]$, and $|S|=[G: H]$. By our p-group Lemma,

$$
|\operatorname{Fix}(\phi)| \equiv_{p}|S| \quad \Longrightarrow \quad\left[N_{G}(H): H\right] \equiv_{p}[G: H] .
$$

p-groups

Here is a picture of the action of the p-subgroup H on the set $S=G / H$, from the proof of the Normalizer Lemma.

$$
S=G / H=\text { set of right cosets of } H \text { in } G
$$

p-subgroups

The following result will be useful in proving the first Sylow theorem.

The Normalizer lemma, Part 2

Suppose $|G|=p^{n} m$, and $H \leq G$ with $|H|=p^{i}<p^{n}$. Then $H \lesseqgtr N_{G}(H)$, and the index [$\left.N_{G}(H): H\right]$ is a multiple of p.

Conclusions:

- $H=N_{G}(H)$ is impossible!
- p^{i+1} divides $\left|N_{G}(H)\right|$.

Proof of the normalizer lemma

The Normalizer lemma, Part 2

Suppose $|G|=p^{n} m$, and $H \leq G$ with $|H|=p^{i}<p^{n}$. Then $H \lesseqgtr N_{G}(H)$, and the index $\left[N_{G}(H): H\right]$ is a multiple of p.

Proof

Since $H \triangleleft N_{G}(H)$, we can create the quotient map

$$
q: N_{G}(H) \longrightarrow N_{G}(H) / H, \quad q: g \longmapsto g H .
$$

The size of the quotient group is $\left[N_{G}(H): H\right]$, the number of cosets of H in $N_{G}(H)$.
By The Normalizer lemma Part $1,\left[N_{G}(H): H\right] \equiv{ }_{p}[G: H]$. By Lagrange's theorem,

$$
\left[N_{G}(H): H\right] \equiv_{p}[G: H]=\frac{|G|}{|H|}=\frac{p^{n} m}{p^{i}}=p^{n-i} m \equiv_{p} 0 .
$$

Therefore, $\left[N_{G}(H): H\right]$ is a multiple of p, so $N_{G}(H)$ must be strictly larger than H.

p-subgroups

Notational convention

Througout, G will be a group of order $|G|=p^{n} \cdot m$, with $p \nmid m$. That is, p^{n} is the highest power of p dividing $|G|$.

Definition

- A p-group is a group of order p^{n}.
- A p-subgroup of G is a subgroup of order $p^{k} \leq p^{n}$.
- A Sylow p-subgroup of G is a subgroup of order p^{n}.

There are three Sylow theorems, and loosely speaking, they describe the following about a group's p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.
2. Relationship: All maximal p-subgroups are conjugate.
3. Number: There are strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.

Our unknown group of order 200

Throughout our lectures on the Sylow theorems, we will have a running example, a "mystery group" M of order 200.

Using only the fact that $|M|=200$, we will unconver as much about the structure of M as we can.

We actually already know a little bit. Recall Cauchy's theorem:

Cauchy's theorem

If p is a prime number dividing $|G|$, then G has an element g of order p.

Our mystery group of order 200

Since our mystery group M has order $|M|=2^{3} \cdot 5^{2}=200$, Cauchy's theorem tells us that:
■ M has an element a of order 2;
■ M has an element b of order 5;
Also, by Lagrange's theorem, $\langle a\rangle \cap\langle b\rangle=\{1\}$.

The $1^{\text {st }}$ Sylow Theorem: Existence of p-subgroups

First Sylow Theorem

G has a subgroup of order p^{k}, for each p^{k} dividing $|G|$. Also, every p-subgroup with fewer than p^{n} elements sits inside one of the larger p-subgroups.

The First Sylow Theorem is in a sense, a generalization of Cauchy's theorem. Here is a comparison:

Cauchy's Theorem	First Sylow Theorem
If p divides $\|G\|$, then \ldots	If p^{k} divides $\|G\|$, then \ldots
There is a subgroup of order p	There is a subgroup of order p^{k}
which is cyclic and has no non-trivial proper subgroups.	which has subgroups of order $1, p, p^{2} \ldots p^{k}$.
G contains an element of order p	G might not contain an element of order p^{k}.

The $1^{\text {st }}$ Sylow Theorem: Existence of p-subgroups

Proof

The trivial subgroup $\{1\}$ has order $p^{0}=1$.
Big idea: Suppose we're given a subgroup $H<G$ of order $p^{i}<p^{n}$. We will construct a subgroup H^{\prime} of order p^{i+1}.

By the normalizer lemma, $H \lesseqgtr N_{G}(H)$, and the order of the quotient group $N_{G}(H) / H$ is a multiple of p.

By Cauchy's Theorem, $N_{G}(H) / H$ contains an element (a coset!) of order p. Call this element $a H$. Note that $\langle a H\rangle$ is cyclic of order p.

Claim: The preimage of $\langle a H\rangle$ under the quotient $q: N_{G}(H) \rightarrow N_{G}(H) / H$ is the subgroup H^{\prime} we seek.

The preimages $q^{-1}(H), q^{-1}(a H), q^{-1}\left(a^{2} H\right), \ldots, q^{-1}\left(a^{p-1} H\right)$ are all distinct cosets of H in $N_{G}(H)$, each of size p^{i}.

Thus, the preimage $H^{\prime}=q^{-1}(\langle a H\rangle)$ contains $p \cdot|H|=p^{i+1}$ elements.

The $1^{\text {st }}$ Sylow Theorem: Existence of p-subgroups

Here is a picture of how we found the group $H^{\prime}=q^{-1}(\langle a H\rangle)$.

Since $|H|=p^{i}$, the subgroup $H^{\prime}=\bigcup_{k=0}^{p-1} a^{k} H$ contains $p \cdot|H|=p^{i+1}$ elements.

Our unknown group of order 200

We now know a little bit more about the structure of our mystery group of order $|M|=2^{3} \cdot 5^{2}$:

- M has a 2-subgroup P_{2} of order $2^{3}=8$;
- M has a 5 -subgroup P_{5} of order $25=5^{2}$;
- Each of these subgroups contains a nested chain of p-subgroups, down to the trivial group, $\{1\}$.

The $2^{\text {nd }}$ Sylow Theorem: Relationship among p-subgroups

Let $\mathrm{Syl}_{p}(G)$ denote the set of Sylow p-subgroups of G.

Second Sylow Theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).

Proof

Let $H<G$ be any Sylow p-subgroup of G, and let $S=G / H=\{H g \mid g \in G\}$, the set of right cosets of H.

Pick any other Sylow p-subgroup K of G. (If there is none, the result is trivial.)
The group K acts on S by right-multiplication, via $\phi: K \rightarrow \operatorname{Perm}(S)$, where

$$
\phi(k)=\text { the permutation sending each } \mathrm{Hg} \text { to } \mathrm{Hg} k .
$$

The $2^{\text {nd }}$ Sylow Theorem: All Sylow p-subgroups are conjugate

Proof

A fixed point of ϕ is a coset $H g \in S$ such that

$$
\begin{aligned}
H g k=H g, \quad \forall k \in K \quad & \Longleftrightarrow \\
& \Longleftrightarrow \mathrm{Hgkg}^{-1}=H, \quad \forall k \in K \\
& \Longleftrightarrow \mathrm{gg}^{-1} \in H, \quad \forall k \in K \\
& \Longleftrightarrow \mathrm{gg}^{-1} \subset H \\
& \Longleftrightarrow \mathrm{gg}^{-1}=H .
\end{aligned}
$$

Thus, if ϕ has a fixed point Hg , then H and K are conjugate by g, and we're done!
All we need to do is show that $|\operatorname{Fix}(\phi)| \not \equiv_{p} 0$.
By the p-group Lemma, $|\operatorname{Fix}(\phi)| \equiv_{p}|S|$. Recall that $|S|=[G: H]$.
Since H is a Sylow p-subgroup, $|H|=p^{n}$. By Lagrange's Theorem,

$$
|S|=[G: H]=\frac{|G|}{|H|}=\frac{p^{n} m}{p^{n}}=m, \quad p \nmid m .
$$

Therefore, $|\operatorname{Fix}(\phi)| \equiv_{p} m \not \equiv_{p} 0$.

Our unknown group of order 200

We now know even more about the structure of our mystery group M, of order $|M|=2^{3} \cdot 5^{2}$:

- If M has any other Sylow 2-subgroup, it is isomorphic to P_{2};
- If M has any other Sylow 5-subgroup, it is isomorphic to P_{5}.

The $3^{\text {rd }}$ Sylow Theorem: Number of p-subgroups

Third Sylow Theorem

Let n_{p} be the number of Sylow p-subgroups of G. Then

$$
n_{p} \text { divides }|G| \quad \text { and } \quad n_{p} \equiv_{p} 1
$$

(Note that together, these imply that $n_{p} \mid m$, where $|G|=p^{n} \cdot m$.)

Proof

The group G acts on $S=\operatorname{Syl}_{p}(G)$ by conjugation, via $\phi: G \rightarrow \operatorname{Perm}(S)$, where

$$
\phi(g)=\text { the permutation sending each } H \text { to } g^{-1} \mathrm{Hg} .
$$

By the Second Sylow Theorem, all Sylow p-subgroups are conjugate! Thus there is only one orbit, $\operatorname{Orb}(H)$, of size $n_{p}=|S|$.

By the Orbit-Stabilizer Theorem,

$$
\underbrace{|\operatorname{Orb}(H)|}_{=n_{p}} \cdot|\operatorname{Stab}(H)|=|G| \quad \Longrightarrow \quad n_{p} \text { divides }|G| .
$$

The $3^{\text {rd }}$ Sylow Theorem: Number of p-subgroups

Proof (cont.)

Now, pick any $H \in \operatorname{Syl}_{p}(G)=S$. The group H acts on S by conjugation, via $\theta: H \rightarrow \operatorname{Perm}(S)$, where

$$
\theta(h)=\text { the permutation sending each } K \text { to } h^{-1} K h .
$$

Let $K \in \operatorname{Fix}(\theta)$. Then $K \leq G$ is a Sylow p-subgroup satisfying

$$
h^{-1} K h=K, \quad \forall h \in H \quad \Longleftrightarrow \quad H \leq N_{G}(K) \leq G .
$$

We know that:

- H and K are Sylow p-subgroups of G, but also of $N_{G}(K)$.

■ Thus, H and K are conjugate in $N_{G}(K)$. (2nd Sylow Thm.)

- $K \triangleleft N_{G}(K)$, thus the only conjugate of K in $N_{G}(K)$ is itself.

Thus, $K=H$. That is, $\operatorname{Fix}(\theta)=\{H\}$ contains only 1 element.

By the p-group Lemma, $n_{p}:=|S| \equiv_{p}|\operatorname{Fix}(\theta)|=1$.

Summary of the proofs of the Sylow Theorems

For the 1st Sylow Theorem, we started with $H=\{1\}$, and inductively created larger subgroups of size p, p^{2}, \ldots, p^{n}.

For the $2^{\text {nd }}$ and $3^{\text {rd }}$ Sylow Theorems, we used a clever group action and then applied one or both of the following:
(i) Orbit-Stabilizer Theorem. If G acts on S, then $|\operatorname{Orb}(s)| \cdot|\operatorname{Stab}(s)|=|G|$.
(ii) p-group Lemma. If a p-group acts on S, then $|S| \equiv_{p}|\operatorname{Fix}(\phi)|$.

To summarize, we used:
S2 The action of $K \in \operatorname{Syl}_{p}(G)$ on $S=G / H$ by right multiplication for some other $H \in \operatorname{Syl}_{p}(G)$.
S3a The action of G on $S=\operatorname{Syl}_{p}(G)$, by conjugation.
S3b The action of $H \in \operatorname{Syl}_{p}(G)$ on $S=\operatorname{Syl}_{p}(G)$, by conjugation.

Summary of the proofs of the Sylow Theorems

Just for fun, the following is the "proof" of all 3 Sylow theorems, from Robin A. Wilson's book Finite Simple Groups.

To prove the first statement, let G act by right multiplication on all subsets of G of size p^{k} : since the number of these subsets is not divisible by p, there is a stabiliser of order divisible by p^{k}, and therefore equal to p^{k}. To prove the second statement, and also to prove that any p-subgroup is contained in a Sylow p-subgroup, let any p-subgroup Q act on the right cosets $P g$ of any Sylow p-subgroup P by right multiplication: since the number of cosets is not divisible by p, there is an orbit $\{P g\}$ of length 1 , so $P g Q=P g$ and $g Q g^{-1}$ lies inside P. To prove the third statement, let a Sylow p-subgroup P act by conjugation on the set of all the other Sylow p-subgroups: the orbits have length divisible by p, for otherwise P and Q are distinct Sylow p-subgroups of $N_{G}(Q)$, which is a contradiction.

Our unknown group of order 200

We now know a little bit more about the structure of our mystery group M, of order $|M|=2^{3} \cdot 5^{2}=200$:

- $n_{5} \mid 8$, thus $n_{5} \in\{1,2,4,8\}$. But $n_{5} \equiv_{5} 1$, so $n_{5}=1$.
- $n_{2} \mid 25$ and is odd. Thus $n_{2} \in\{1,5,25\}$.
- We conclude that M has a unique (and hence normal) Sylow 5-subgroup P_{5} (of order $5^{2}=25$), and either 1,5 , or 25 Sylow 2-subgroups (of order $2^{3}=8$).

Our unknown group of order 200

Suppose M has a subgroup isomorphic to D_{4}.
This would be a Sylow 2-subgroup. Since all of them are conjugate, M cannot contain a subgroup isomorphic to $Q_{8}, C_{4} \times C_{2}$, or C_{8} !

In particular, M cannot even contain an element of order 8. (Why?)

Simple groups and the Sylow theorems

Definition

A group G is simple if its only normal subgroups are G and $\langle e\rangle$.

Since all Sylow p-subgroups are conjugate, the following result is straightforward:

Proposition

A Sylow p-subgroup is normal in G if and only if it is the unique Sylow p-subgroup (that is, if $n_{p}=1$).

The Sylow theorems are very useful for establishing statements like:

There are no simple groups of order k (for some k).

To do this, we usually just need to show that $n_{p}=1$ for some p dividing $|G|$.
Since we established $n_{5}=1$ for our running example of a group of size $|M|=200=2^{3} \cdot 5^{2}$, there are no simple groups of order 200.

An easy example

Tip

When trying to show that $n_{p}=1$, it's usually more helpful to analyze the largest primes first.

Proposition

There are no simple groups of order 84.

Proof

Since $|G|=84=2^{2} \cdot 3 \cdot 7$, the Third Sylow Theorem tells us:

- n_{7} divides $2^{2} \cdot 3=12$ (so $n_{7} \in\{1,2,3,4,6,12\}$)
- $n_{7} \equiv_{7} 1$.

The only possibility is that $n_{7}=1$, so the Sylow 7 -subgroup must be normal.

Observe why it is beneficial to use the largest prime first:

- n_{3} divides $2^{2} \cdot 7=28$ and $n_{3} \equiv_{3} 1$. Thus $n_{3} \in\{1,2,4,7,14,28\}$.
- n_{2} divides $3 \cdot 7=21$ and $n_{2} \equiv_{2} 1$. Thus $n_{2} \in\{1,3,7,21\}$.

A harder example

Proposition

There are no simple groups of order 351.

Proof

Since $|G|=351=3^{3} \cdot 13$, the Third Sylow Theorem tells us:

- n_{13} divides $3^{3}=27$ (so $n_{13} \in\{1,3,9,27\}$)
- $n_{13} \equiv_{13} 1$.

The only possibilies are $n_{13}=1$ or 27 .
A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order $3^{3}=27$. Therefore, $P \cap Q=\{1\}$.

Suppose $n_{13}=27$. Every Sylow 13 -subgroup contains 12 non-identity elements, and so G must contain $27 \cdot 12=324$ elements of order 13 .

This leaves $351-324=27$ elements in G not of order 13. Thus, G contains only one Sylow 3 -subgroup (i.e., $n_{3}=1$) and so G cannot be simple.

The hardest example

Proposition

If $H \lessgtr G$ and $|G|$ does not divide $[G: H]$!, then G cannot be simple.

Proof

Let G act on the right cosets of H (i.e., $S=G / H$) by right-multiplication:

$$
\phi: G \longrightarrow \operatorname{Perm}(S) \cong S_{n}, \quad \phi(g)=\text { the permutation that sends each } H \times \text { to } H \times g .
$$

Recall that the kernel of ϕ is the intersection of all conjugate subgroups of H :

$$
\operatorname{Ker} \phi=\bigcap_{x \in G} x^{-1} H x .
$$

Notice that $\langle e\rangle \leq \operatorname{Ker} \phi \leq H \leq G$, and $\operatorname{Ker} \phi \triangleleft G$.
If $\operatorname{Ker} \phi=\langle e\rangle$ then $\phi: G \hookrightarrow S_{n}$ is an injective. But this is impossible because $|G|$ does not divide $\left|S_{n}\right|=[G: H]$!.

Corollary

There are no simple groups of order 24.

Theorem (classification of finite simple groups)

Every finite simple group is isomorphic to one of the following groups:

- A cyclic group \mathbb{Z}_{p}, with p prime;
- An alternating group A_{n}, with $n \geq 5$;
- A Lie-type Chevalley group: $\operatorname{PSL}(n, q), \operatorname{PSU}(n, q), \operatorname{PsP}(2 n, p)$, and $P \Omega^{\epsilon}(n, q)$;
- A Lie-type group (twisted Chevalley group or the Tits group): $D_{4}(q), E_{6}(q), E_{7}(q)$, $E_{8}(q), F_{4}(q),{ }^{2} F_{4}\left(2^{n}\right)^{\prime}, G_{2}(q),{ }^{2} G_{2}\left(3^{n}\right),{ }^{2} B\left(2^{n}\right)$;
- One of 26 exceptional "sporadic groups."

The two largest sporadic groups are the:
■ "baby monster group" B, which has order

$$
|B|=2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47 \approx 4.15 \times 10^{33}
$$

■ "monster group" M, which has order

$$
|M|=2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \approx 8.08 \times 10^{53}
$$

The proof of this classification theorem is spread across $\approx 15,000$ pages in ≈ 500 journal articles by over 100 authors, published between 1955 and 2004.

Image by Ivan Andrus， 2012

The Periodic Table Of Finite Simple Groups

$a_{2} c_{2} Z_{1}$
1
1

Dynkin Diagrams of Simple Lie Algebras

$\begin{gathered} A_{1}(4), A_{1}(5) \\ A_{5} \\ 60 \end{gathered}$	$\begin{array}{\|c} \hline A_{2}(2) \\ A_{1}(7) \end{array}$		$\%$	\longrightarrow				\cdots	G_{2}			$\begin{array}{\|c} { }^{2} A_{A_{1}(4)} \\ B_{2}(3) \\ 25920 \\ \hline \end{array}$	$C_{3}(3)$ $45853516 * 2$	$\begin{gathered} D_{4}(2) \\ 174182200 \end{gathered}$	$\begin{aligned} & { }^{2} D_{4}\left(2^{2}\right) \\ & 199406720 \end{aligned}$	$\begin{gathered} \hline G_{2}(2)^{\prime} \\ { }^{2} A_{2}(9) \\ \text { 6ous } \\ \hline \end{gathered}$
$\begin{gathered} A_{2}(9) \cdot B_{2}(2)^{\prime} \\ A_{6} \\ 360 \end{gathered}$	${ }^{2} G_{2}(3)^{\prime}$ $A_{1}(8)$ 504		0	\bigcirc				，	－	\％		$\begin{aligned} & B_{2}(4) \\ & 979200 \end{aligned}$	$\begin{gathered} C_{3}(5) \\ 228500 \\ 00050000 \end{gathered}$	$D_{4}(3)$ 483219884400	${ }^{2} D_{4}\left(3^{2}\right)$ 10151768614520	${ }_{62}{ }^{2} A_{2}(16)$
$\begin{gathered} A_{7} \\ 2520 \end{gathered}$	$\begin{gathered} A_{1}(11) \\ \end{gathered}$		$\begin{gathered} E_{7}(2) \\ = \end{gathered}$	$\begin{gathered} E_{8}(2) \\ = \\ = \end{gathered}$		$\begin{aligned} & G_{2}(3) \\ & \\ & 4255696 \end{aligned}$	$\begin{aligned} & { }^{3} D_{4}\left(2^{3}\right) \\ & 211341312 \end{aligned}$	$\begin{aligned} & { }^{2} E_{6}\left(2^{2}\right) \\ & 76529+99693 \\ & 774853+39200 \end{aligned}$	$\begin{gathered} { }^{2} B_{2}\left(2^{3}\right) \\ { }^{3} 91200 \end{gathered}$	${ }^{2} F_{4}(2){ }^{\prime}$ 17971200	$\begin{aligned} & { }^{2} G_{2}\left(3^{3}\right) \\ & 1008344482 \end{aligned}$	$\begin{gathered} B_{3}(2) \\ 1451520 \end{gathered}$		$\begin{array}{c\|} D_{5}(2) \\ 2 \text { 205225 sussan } \\ \hline \end{array}$	${ }^{2} D_{5}\left(2^{2}\right)$	$\begin{gathered} { }^{2} A_{2}(25) \\ 126000 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline A_{3}(2) \\ A_{8} \\ 20160 \\ \hline \end{array}$	$\begin{gathered} A_{1}(13) \\ 1092 \end{gathered}$		$\begin{gathered} E_{7}(3) \\ \\ m \end{gathered}$	$\begin{gathered} E_{8}(3) \\ \\ \end{gathered}$		$\begin{gathered} G_{2}(4) \\ 251596800 \\ \hline \end{gathered}$	${ }^{3} D_{4}\left(3^{3}\right)$ 20560831566912	$\begin{aligned} & { }^{2} E_{6}\left(3^{2}\right) \\ & \end{aligned}$	$\begin{aligned} & { }^{2} B_{2}\left(2^{5}\right) \\ & { }_{32} 2376600 \end{aligned}$	$\begin{aligned} & { }^{2} F_{4}\left(2^{3}\right) \\ & \begin{array}{c} 25905352699 \\ 586176614050 \end{array} \end{aligned}$	$\begin{gathered} { }^{2} G_{2}\left(3^{5}\right) \\ \begin{array}{c} 49825657 \\ 49930552 \end{array} \end{gathered}$	$\begin{aligned} & B_{2}(5) \\ & 4680000 \end{aligned}$		$D_{4}(5)$ 000000000		$\begin{aligned} & { }^{2} A_{3}(9) \\ & \\ & 32265920 \end{aligned}$
A_{9} 181440	$\begin{gathered} A_{1}(17) \\ 2448 \end{gathered}$	$\begin{gathered} E_{6}(4) \\ \\ \end{gathered}$	$\begin{gathered} E_{7}(4) \\ = \\ = \end{gathered}$	$\begin{gathered} E_{8}(4) \\ \hdashline \end{gathered}$		$\begin{gathered} G_{2}(5) \\ \text { Ssspwovec } \end{gathered}$		$\begin{aligned} & { }^{2} E_{6}\left(4^{2}\right) \\ & \\ & \end{aligned}$	${ }^{2} B_{2}\left(2^{7}\right)$ 34053383650	$\begin{gathered} { }^{2} F_{4}\left(2^{5}\right) \\ = \end{gathered}$		$\begin{gathered} B_{2}(7) \\ 138297600 \end{gathered}$	$\begin{gathered} C_{3}(9) \\ \text { sessinale } \\ \text { semssace } \end{gathered}$			$\begin{gathered} { }^{2} A_{2}(64) \\ 5515776 \\ \hline \end{gathered}$
A_{n} $\frac{n}{2}$		$\begin{gathered} E_{6}(q) \\ x+2 \end{gathered}$	$\begin{gathered} E_{7}(q) \\ =-h^{*} \\ \hline \end{gathered}$	$\begin{gathered} E_{8}(q) \\ y_{8} \\ \hline ⿰ 幺 幺 \end{gathered}$	$\begin{gathered} F_{4}(q) \\ \gamma \end{gathered}$	$\begin{gathered} G_{2}(q) \\ \hline \end{gathered}$	$\begin{gathered} { }^{3} D_{4}\left(q^{3}\right) \\ \\ \hline \end{gathered}$	$\begin{aligned} & { }^{2} E_{6}\left(q^{2}\right) \\ & \\ & \hline \end{aligned}$			${ }^{2} G_{2}\left(3^{2 n+1}\right)$				$\begin{aligned} & o_{2 \pi}(q) \\ & { }^{2} D_{n}\left(q^{2}\right) \\ & \end{aligned}$	

C_{2}
2
C_{3}
3
C_{5}
5
C_{7}
7
C_{11}
11
C_{13}
13
C_{p}
p

\square Alternating Groups
\square Classical Chevalley Groups
\square Chevalley Groups
\square Classical Steinberg Groups
\square Steinberg Groups
\square Suzuki Groups
\square Ree Groups and Tits Group
\square Sporadic Groups
\square Cyelic Groups

Sz	O＇NS，o－s	3	－2	${ }^{1}$	F_{5}, D	LyS	$F_{2} \mathrm{E}$	M（22）	M（23）	$F_{5}, \mathrm{M}(24)^{\prime}$	F_{2}	$F_{\text {L }}, M_{1}$
Suz	$O^{\prime} N$	Co_{3}	Co_{2}	Co_{1}	HN	Ly	Th	Fi_{22}	Fi_{23}	$F i_{24}^{\prime}$	B	M
483 454466000	400515505920	49376655600	＋230552312000	4157976306 543.360000	$\begin{array}{r} 233030 \\ 912000000 \end{array}$	51565179 604000000	90545943 887872000	64561751654＊＊	4089470473 293004500	$\begin{array}{\|c} 1255205209190 \\ 661721292500 \end{array}$	，imames	－＝arurume

Finite Simple Group (of Order Two), by The Klein Four ${ }^{\text {TM }}$

Musical Fruitcake

Klein Four

Open iTunes to preview, buy, and download music.

View in iTunes

$\$ 9.99$

Genres: Pop, Music
Released: Dec 05, 2005
(P) 2005 Klein Four

Customer Ratings

	Name
1	Power of One

Time	Price	
5:16	\$0.99	View In iTunes *
3:00	\$0.99	View In iTunes
3:17	\$0.99	View In iTunes *
4:19	\$0.99	View In iTunes *
3:43	\$0.99	View In iTunes *
4:09	\$0.99	View In iTunes
3:42	\$0.99	View In iTunes ${ }^{\text {, }}$
3:41	$\$ 0.99$	View In iTunes *
4:13	\$0.99	View In iTunes *
3:48	\$0.99	View In iTunes *
3:51	\$0.99	View In iTunes
4:51	\$0.99	View In iTunes *
2:50	\$0.99	View In iTunes ${ }^{\text {P }}$
2:17	\$0.99	View In iTunes *

