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Some context

Once the study of group theory began in the 19th century, a natural research question was
to classify all groups.

Of course, this is too difficult in general, but for certain cases, much is known. Later, we'll
establish the following fact, which allows us to completely classify all finite abelian groups.

Proposition
Zinm =2 Zn X Zm if and only if ged(n, m) = 1. J

Finite non-abelian groups are much harder. The Sylow Theorems, developed by Norwegian
mathematician Peter Sylow (1832-1918), provide insight into their structure.
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The Fundamental Theorem of Finite Abelian Groups

Classification theorem (by “prime powers")

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some
integers ni, Ny, ..., Nm,
ATy X Lpy X -+ X Ly,

where each n; is a prime power, i.e., n; = p,fi", where p; is prime and d; € N.

Example

Up to isomorphism, there are 6 abelian groups of order 200 = 23 . 52:
Zg X Zos Zg X Zs X Zs
ZQXZ4XZ25 ZQXZ4XZsXZs
Z2XZ2XZ2XZ25 Z2><Zg><Z2><Z5><Z5

Instead of proving this statement for groups, we'll prove a much more general statement for
R-modules over a PID, later in the class.

The result above is the special case of the theorem for Z-modules (=finite abelan groups).

The special case for F-modules (=vector spaces) leads to the Jordan canonical form.
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The Fundamental Theorem of Finite Abelian Groups (alternate form)

Classification theorem (by “elementary divisors™)

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some
integers ki, ko, ..., km,
A%Zkl XZk2 X oo X L, -

where each k; is a multiple of k1.

Example

Up to isomorphism, there are 6 abelian groups of order 200 = 23 . 52:
by “prime-powers” by “elementary divisors”
Zg X Zos Zooo
Z4 X ZQ X Zzs ZlOO X ZQ
Z2><Z2><ZQ><Z25 Z50><Zz><Zg
Zg x 75 X Zs Zao X Zs
Zig X Lo X Ly X Zs Zino X Z1o
ZQ><Z2><ZQXZ5><Z5 Zl())(ZloXZQ

We will also prove a much more general statement for modules later in the class.
The result above is the special case of the theorem for Z-modules (=finite abelan groups).

The special case for F-modules (=vector spaces) leads to the rational canonical form.
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The Fundamental Theorem of Finitely Generated Abelian Groups

Just for fun, here is the classification theorem for all finitely generated abelian groups. Note
that it is not much different.

Theorem

Every finitely generated abelian group A is isomorphic to a direct product of cyclic groups,
i.e., for some integers ni, ny, ..., Nm,

AZZ X XL X Lpy X Liny X -+ X Lpp,
—————

k copies

. . . d; L
where each n; is a prime power, i.e., n; = p;', where p; is prime and d; € N.

In other words, A is isomorphic to a (multiplicative) group with presentation:
A=(a1,...,ak, M,y -y rm | rfl =-.=rm=1,..).

In summary, abelian groups are relatively easy to understand.

In contrast, nonabelian groups are more mysterious and complicated. The Sylow Theorems
which will help us better understand the structure of finite nonabelian groups.
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p-groups
Before we introduce the Sylow theorems, we need to better understand p-groups.
A p-group is any group of order p". For example, Ci, C4, V4, D4y and Qg are all 2-groups.

p-group Lemma
If a p-group G acts on a set S via ¢: G — Perm(S), then

| Fix(¢)l =5 [S].-
Proof (sketch)
Fix(¢) non-fixed points all in size-pk orbits
SN
" o
Suppose |G| =P O/;::lt\:c& p elts p elts
o

By the Orbit-Stabilizer theorem, the only 5 TC
possible orbit sizes are 1, p, p?,. .., p". T P dis p s
o
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p-groups

Normalizer lemma, Part 1

If H is a p-subgroup of G, then
[Ne(H): Hl =, [G: H].

Proof

Let S= G/H = {Hx | x € G}. The group H acts on S by right-multiplication, via
¢: H — Perm(S), where

¢(h) = the permutation sending each Hx to Hxh.
The fixed points of ¢ are the cosets Hx in the normalizer Ng(H):
Hxh = Hx, VYhe H = Hxhx~1=H, YheH
<= xhx—1 € H, Vhe H
= x € Ng(H).
Therefore, | Fix(¢)| = [Ng(H): H], and |S| =[G : H]. By our p-group Lemma,

Fix(9)| =5 IS| = [N6(H): H] =, [G: H]. =
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p-groups

Here is a picture of the action of the p-subgroup H on the set S = G/H, from the proof of
the Normalizer Lemma.

S = G/H = set of right cosets of H in G

(i
CR&

The fixed points are precisely Orbits of size > 1 are of various sizes
the cosets in Ng(H) dividing |H|, but all lie outside Ng(H)
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p-subgroups

The following result will be useful in proving the first Sylow theorem.

The Normalizer lemma, Part 2
Suppose |G| = p"m, and H < G with |H| = p’ < p". Then H < Ng(H), and the index
[Ng(H) : H] is a multiple of p.

[G : H] cosets of H (a multiple of p)

Hy,
H< Ng(H)<G H | Hx | -+ | Hx | Hy Hys
[Ng(H) : H] > 1 cosets of H (a multiple of p)
Conclusions:
m H = Ng(H) is impossible!
m p'tl divides |[Ng(H)|.
Math 8510, Abstract Algebra | 9/33
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Proof of the normalizer lemma

The Normalizer lemma, Part 2

Suppose |G| = p"m, and H < G with |H| = p’ < p". Then H < Ng(H), and the index
[Ng(H) : H] is a multiple of p.

Proof

Since H < Ng(H), we can create the quotient map
q: Ng(H) — Ng(H)/H, q:g— gH.

The size of the quotient group is [Ng(H): H], the number of cosets of H in Ng(H).

By The Normalizer lemma Part 1, [Ng(H): H] =, [G: H]. By Lagrange’s theorem,

G g i
INo(H): H] =, [G: H] = 1l = P"™ _ po—ipy— .
Hl P
Therefore, [Ng(H): H] is a multiple of p, so Ng(H) must be strictly larger than H. O
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p-subgroups

Notational convention

Througout, G will be a group of order |G| = p" - m, with p{ m. That is, p" is the highest
power of p dividing |G]|.

Definition
m A p-group is a group of order p".
m A p-subgroup of G is a subgroup of order pk < p”.

m A Sylow p-subgroup of G is a subgroup of order p".

There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.
2. Relationship: All maximal p-subgroups are conjugate.
3. Number: There are strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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Our unknown group of order 200

Throughout our lectures on the Sylow theorems, we will have a running example, a “mystery
group” M of order 200.

|M| =200

Using only the fact that |M| = 200, we will unconver as much about the structure of M as
we can.

We actually already know a little bit. Recall Cauchy’s theorem:

Cauchy's theorem J

If p is a prime number dividing |G|, then G has an element g of order p.
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Our mystery group of order 200

Since our mystery group M has order |[M| = 23 . 52 = 200, Cauchy's theorem tells us that:

m M has an element a of order 2;

m M has an element b of order 5;

Also, by Lagrange's theorem, (a) N (b) = {1}.

|M| =200
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The 15¢ Sylow Theorem: Existence of p-subgroups

First Sylow Theorem

G has a subgroup of order p¥, for each p¥ dividing |G|. Also, every p-subgroup with fewer
than p" elements sits inside one of the larger p-subgroups.

The First Sylow Theorem is in a sense, a generalization of Cauchy’s theorem. Here is a
comparison:

Cauchy's Theorem First Sylow Theorem

If p divides |G|, then ... If p¥ divides |G|, then ...
There is a subgroup of order p There is a subgroup of order pk
which is cyclic and has no non-trivial proper subgroups. which has subgroups of order 1, p, p2 . pk.
G contains an element of order p G might not contain an element of order pk.
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The 15 Sylow Theorem: Existence of p-subgroups
Proof

The trivial subgroup {1} has order p® = 1.

Big idea: Suppose we're given a subgroup H < G of order p’ < p". We will construct a
subgroup H’ of order pt1.

By the normalizer lemma, H < Ng(H), and the order of the quotient group Ng(H)/H is a
multiple of p.

By Cauchy’s Theorem, Ng(H)/H contains an element (a coset!) of order p. Call this
element aH. Note that (aH) is cyclic of order p.

Claim: The preimage of (aH) under the quotient q: Ng(H) — Ng(H)/H is the subgroup H’
we seek.

The preimages q_l(H), g 1(aH), g~ Y(a%H), ..., g~ (aP~1H) are all distinct cosets of H in
Ng(H), each of size p'.

Thus, the preimage H' = g—'(({aH)) contains p - |H| = p't! elements. O
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The 15¢ Sylow Theorem: Existence of p-subgroups

Here is a picture of how we found the group H' = g~ 1({aH)).

q

p—1
Since |H| = p', the subgroup H' = U a¥H contains p - |H| = p/! elements.
k=0
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Our unknown group of order 200

We now know a little bit more about the structure of our mystery group of order
M| = 23.52;

m M has a 2-subgroup P, of order 23 = §;
m M has a 5-subgroup Ps of order 25 = 52;

m Each of these subgroups contains a nested chain of p-subgroups, down to the trivial
group, {1}.

[M| =200

M. Macauley (Clemson)

Lecture 1.3: The Sylow theorems

Math 8510, Abstract Algebra |

17 / 33


mailto:macaule@clemson.edu

The 2" Sylow Theorem: Relationship among p-subgroups

Let Syl,(G) denote the set of Sylow p-subgroups of G.

Second Sylow Theorem

Any two Sylow p-subgroups are conjugate (and hence isomorphic).

Proof

Let H < G be any Sylow p-subgroup of G, and let S = G/H = {Hg | g € G}, the set of
right cosets of H.

Pick any other Sylow p-subgroup K of G. (If there is none, the result is trivial.)

The group K acts on S by right-multiplication, via ¢: K — Perm(S), where

¢(k) = the permutation sending each Hg to Hgk.
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The 24 Sylow Theorem: All Sylow p-subgroups are conjugate

Proof

A fixed point of ¢ is a coset Hg € S such that
Hgk = Hg, Vke K — Hgkg=l =H,
— gkg=l € H,
= gKg 1 CH
<= gKkg'=H.

Thus, if ¢ has a fixed point Hg, then H and K are conjugate by g,
All we need to do is show that | Fix(¢)| #p 0.
By the p-group Lemma, | Fix(¢)| =p |S|. Recall that |S| =[G : H].

Since H is a Sylow p-subgroup, |H| = p". By Lagrange’s Theorem,

Vk e K
Vk e K

and we're done!

G "m
|5|:[G;H]:u:p =m, pitm.
|H — p"
Therefore, | Fix(¢)| =p m #p 0. O
y
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Our unknown group of order 200

We now know even more about the structure of our mystery group M, of order |M| = 23 - 52

m If M has any other Sylow 2-subgroup, it is isomorphic to Py;
m If M has any other Sylow 5-subgroup, it is isomorphic to Ps.

[M| =200

If any other Sylow

2-subgroup exists,

it is isomorphic to
the first

M. Macauley (Clemson) Lecture 1.3: The Sylow theorems Math 8510, Abstract Algebra | 20 /33


mailto:macaule@clemson.edu

The 3' Sylow Theorem: Number of p-subgroups
Third Sylow Theorem
Let np be the number of Sylow p-subgroups of G. Then
np divides |G| and np=p1.

(Note that together, these imply that n, | m, where |G| = p" - m.)

Proof
The group G acts on S = Syl,(G) by conjugation, via ¢: G — Perm(S), where

¢(g) — the permutation sending each H to ging.

By the Second Sylow Theorem, all Sylow p-subgroups are conjugate! Thus there is only one
orbit, Orb(H), of size n, = |S|.

By the Orbit-Stabilizer Theorem,

| Orb(H)| -| Stab(H)| = |G| = np divides |G| .
~————

=np
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The 34 Sylow Theorem: Number of p-subgroups

Proof (cont.)

Now, pick any H € Sylp(G) = S. The group H acts on S by conjugation, via
0: H — Perm(S), where

9(/7) — the permutation sending each K to h~1Kh.
Let K € Fix(0). Then K < G is a Sylow p-subgroup satisfying
hlKh=K, YVheH <= H<NgK)<G.

We know that:
m H and K are Sylow p-subgroups of G, but also of Ng(K).
m Thus, H and K are conjugate in Ng(K). (2nd Sylow Thm.)
m K < Ng(K), thus the only conjugate of K in Ng(K) is itself.

Thus, K = H. That is, Fix(9) = {H} contains only 1 element.

By the p-group Lemma, n, := |S| =, | Fix(6)| = 1.
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Summary of the proofs of the Sylow Theorems

For the 1st Sylow Theorem, we started with H = {1}, and inductively created larger
subgroups of size p, p2,...,p".

For the 229 and 3'¥ Sylow Theorems, we used a clever group action and then applied one or
both of the following:

(i) Orbit-Stabilizer Theorem. If G acts on S, then | Orb(s)|-| Stab(s)| = |G].
(ii) p-group Lemma. If a p-group acts on S, then |S| =, | Fix(¢)|.

To summarize, we used:

S2 The action of K € Syl,(G) on S = G/H by right multiplication for some other
H € Syl,(G).
S3a The action of G on S = Syl,(G), by conjugation.
S3b The action of H € Syl,(G) on S = Syl,(G), by conjugation.
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Summary of the proofs of the Sylow Theorems

Just for fun, the following is the “proof” of all 3 Sylow theorems, from Robin A. Wilson's
book Finite Simple Groups.

To prove the first statement, let G act by right multiplication on all subsets
of G of size p¥: since the number of these subsets is not divisible by p, there
is a stabiliser of order divisible by p*, and therefore equal to pF. To prove
the second statement, and also to prove that any p-subgroup is contained in
a Sylow p-subgroup, let any p-subgroup @ act on the right cosets Pg of any

Sylow p-subgroup P by right multiplication: since the number of cosets is not
divisible by p, there is an orbit {Pg} of length 1, so PgQ = Pg and ¢Qg~!
lies inside P. To prove the third statement, let a Sylow p-subgroup P act by
conjugation on the set of all the other Sylow p-subgroups: the orbits have
length divisible by p, for otherwise P and @ are distinct Sylow p-subgroups
of Ng(Q), which is a contradiction.
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Our unknown group of order 200
We now know a little bit more about the structure of our mystery group M, of order
M| = 23 .52 = 200:

m ns | 8, thus ns € {1,2,4,8}. But ns =5 1, so ns = 1.
m 1y | 25 and is odd. Thus ny € {1,5,25}.

m We conclude that M has a unique (and hence normal) Sylow 5-subgroup Ps (of order
52 = 25), and either 1, 5, or 25 Sylow 2-subgroups (of order 23 = 8).

The only Sylow
5-subgroup is normal

There may be other
Sylow 2-subgroups

M. Macauley (Clemson)
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Our unknown group of order 200

The only Sylow
5-subgroup is normal

[M| =200

There may be other
Sylow 2-subgroups

Suppose M has a subgroup isomorphic to Dy.

This would be a Sylow 2-subgroup. Since all of them are conjugate, M cannot contain a

subgroup isomorphic to Qg, C4 x Gy, or Cg!

In particular, M cannot even contain an element of order 8. (Why?)
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Simple groups and the Sylow theorems

A group G is simple if its only normal subgroups are G and (e).

Definition J

Since all Sylow p-subgroups are conjugate, the following result is straightforward:

Proposition

A Sylow p-subgroup is normal in G if and only if it is the unique Sylow p-subgroup (that is,
if np =1).

The Sylow theorems are very useful for establishing statements like:
There are no simple groups of order k (for some k).

To do this, we usually just need to show that n, = 1 for some p dividing |G]|.

Since we established ns = 1 for our running example of a group of size |[M| = 200 = 23 . 52,
there are no simple groups of order 200.
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An easy example

Tip

When trying to show that n, = 1, it's usually more helpful to analyze the largest primes first.
v

Proposition

There are no simple groups of order 84.

Proof

Since |G| = 84 = 22 .3 .7, the Third Sylow Theorem tells us:
m n7 divides 22 -3 =12 (so n7 € {1,2,3,4,6,12})
u n7 =7 1.

The only possibility is that n; = 1, so the Sylow 7-subgroup must be normal. |

Observe why it is beneficial to use the largest prime first:
m n3 divides 22 - 7 =28 and n3 =3 1. Thus n3 € {1,2,4,7,14,28}.
m np divides 3-7 =21 and n, =2 1. Thus np € {1,3,7,21}.
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A harder example

Proposition

There are no simple groups of order 351.

Proof

Since |G| = 351 = 33 - 13, the Third Sylow Theorem tells us:
m m3 divides 3% = 27 (so m3 € {1,3,9,27})
= n;3 =13 1.

The only possibilies are nj3 = 1 or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup @ has order 3% = 27.
Therefore, PN Q = {1}.

Suppose ni3 = 27. Every Sylow 13-subgroup contains 12 non-identity elements, and so G
must contain 27 - 12 = 324 elements of order 13.

This leaves 351 — 324 = 27 elements in G not of order 13. Thus, G contains only one Sylow
3-subgroup (i.e., n3 = 1) and so G cannot be simple. O

v
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The hardest example

Proposition
If H< G and |G| does not divide [G : H]!, then G cannot be simple.

Proof
Let G act on the right cosets of H (i.e., S = G/H) by right-multiplication:

¢: G — Perm(S) =IS, 9 ¢(g) = the permutation that sends each Hx to Hxg.

Recall that the kernel of ¢ is the intersection of all conjugate subgroups of H:

Ker ¢ = ﬂ x"THx.

xX€G
Notice that (e) < Ker¢ < H < G, and Ker¢ <1 G.

If Ker ¢ = (e) then ¢: G < S, is an injective. But this is impossible because |G| does not

divide |S,| = [G : H]!. O
y
Corollary
There are no simple groups of order 24.
y
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Theorem (classification of finite simple groups)

Every finite simple group is isomorphic to one of the following groups:
m A cyclic group Zp, with p prime;
m An alternating group A,, with n > 5;
m A Lie-type Chevalley group: PSL(n, q), PSU(n, q), PsP(2n, p), and PQ¢(n, q);
[

A Lie-type group (twisted Chevalley group or the Tits group): Da(q), Es(q), Ez(q).
Es(q), Fa(q), 2Fa(2")’, Ga(q), 2Ga(3"), 2B(2");
m One of 26 exceptional “sporadic groups.”

The two largest sporadic groups are the:

m “baby monster group” B, which has order
B =2%.318.5°.72.11.13.17-19-23-31-47 ~ 4.15 x 10%;
m “monster group” M, which has order
M| =2%.320.5%.76.112.13%.17.19-23-29.31-41-47-59 - 71 ~ 8.08 x 10%.

The proof of this classification theorem is spread across ~ 15,000 pages in ~ 500 journal
articles by over 100 authors, published between 1955 and 2004.
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Image by Ivan Andrus, 2012
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Finite Simple Group (of Order Two), by The Klein Four™

View More by This Artist

Musical Fruitcake
Klein Four

Open iTunes to preview, buy, and download music.

Name Artist Time Price
1 Power of One Klein Four 5:16 $0.99 View In iTunes »
2 Finite Simple Group (of Order Two) Klein Four 3:00 $0.99 View In iTunes »
3 Three-Body Problem Klein Four 3:17 $0.99 View In iTunes »
4 Just the Four of Us Klein Four 4:19 $0.99 View In iTunes »
5 Lemma Klein Four 3:43 $0.99 View In iTunes »
6 Calculating Klein Four 4:09 $0.99 View In iTunes »
7 XX Potential Klein Four 3:42 $0.99 View In iTunes »
$9.99
8 Confuse Me Klein Four 3:41 $0.99 View In iTunes »
Genres: Pop, Music
Released: Dec 05, 2005 9 Universal Klein Four 4:13  $0.99 View In iTunes »
® 2005 Klein Four
10 Contradiction Klein Four 3:48 $0.99 View In iTunes »
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13 Musical Fruitcake (Pass it Around) Klein Four 2:50 $0.99 View In iTunes b
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