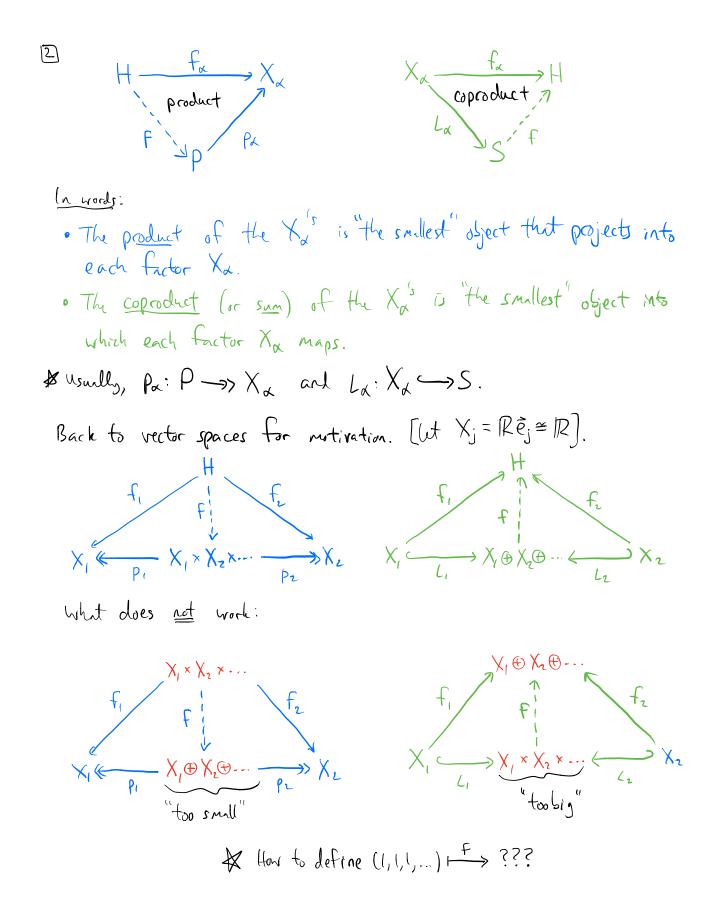
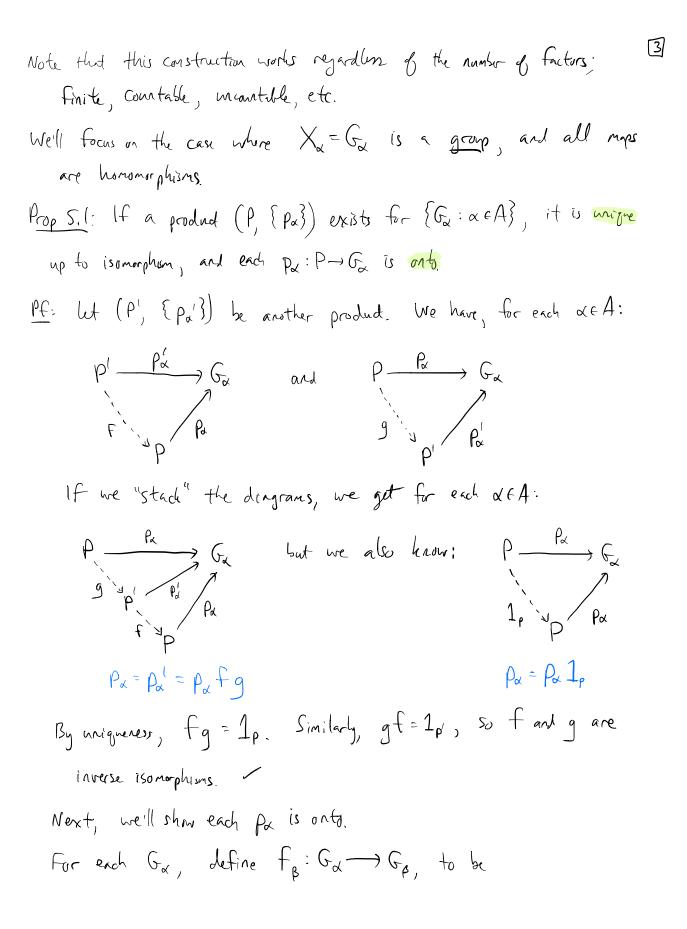
5. Products, coproducts, and categories

We'll motivate the difference between products is coproducts with vector spaces.
Question: What is ling
$$\mathbb{R}^n$$
? ("infinite dimensional space")
There are several things this call mean:
Product: $\mathbb{R}^{\infty} := \prod_{i=1}^{\infty} \mathbb{R} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$... Contains $(1,1,1,1,...)$
Sum: $\mathbb{E}^{\infty} := \mathbb{R}^{\frac{1}{2}} \oplus \mathbb{R}^{$





 $f_{\beta}(x) = \begin{cases} 1 \in G_{\beta} & x \in G_{\beta} \neq G_{\alpha} & \text{truind map} \\ x \in G_{\beta} & x \in G_{\beta} = G_{\alpha} & \text{identity map} \end{cases}$

Fix H=G2. For all BEA, $H = G_{\alpha} \xrightarrow{f_{\beta}} G_{\beta} \xrightarrow{f_{\beta}} G_{\beta} \xrightarrow{f_{\alpha}} f_{\beta} = \alpha \xrightarrow{f_{\alpha}} G_{\alpha} \xrightarrow{f_{\alpha}} f_{\alpha} = 1_{\alpha} \xrightarrow{f_{\alpha}} G_{\alpha}$ Since 1x = pxf and 1x is onto, so is px. \Box Thm 5.2: If {G, : x A } is a nonempty family of groups, then the product of {Gx : x e A } exists PE: We'll show that the Cartesian product is the product. Wt P= (I Gx. Write elements as $(X_{\alpha})_{\alpha \in A}$, where $(X_{\alpha})(y_{\alpha}) := (X_{\alpha} y_{\alpha})$. Define Pa: P-> Ga as the "projection map" $(X_{\beta}) \longrightarrow X_{\lambda}$ Suppose fx: H->Gx is a homomorphism, for all dEA. Define $F: | f \longrightarrow \rho$, $f(h) = (f_{\alpha}(h))_{\lambda \in A}$ Chuch: $p_{x}f = f_{x}$ $H \xrightarrow{f_{x}} G_{x}$ $h_{y} \xrightarrow{f_{x}} f_{x}(h)$ $f \xrightarrow{v} p_{x}$ p_{x} $f_{x}(h)$

9

Uniqueness: Suppose
$$g: H \to G$$
 also satisfies $p_i g = f_i$ (for each i),
then $p_i f = p_i g$. Then, for any $x \in H_j$ we have
 $f(x) = p_i (f(x)) p_2(f(x)) = p_i (g(x)) p_2(g(x)) = g(x)$.
Since products exist and are unique, and G is a product,
it follows that $G \cong G_i \times G_2$.
Remark: Then 5.3 naturally extends to $n > 2$ factors. Condition(ii)
 $(G_i \cap G_i = 1)$ becomes: $G_i \cap \langle \bigcup G_j \rangle = 1$ for each i.
When the assumptions of Then 5.3 hold, we say that G is the
internal direct product of its subgroups G_i, G_2 (or $G_1, ..., G_n$).

Some basic category theory

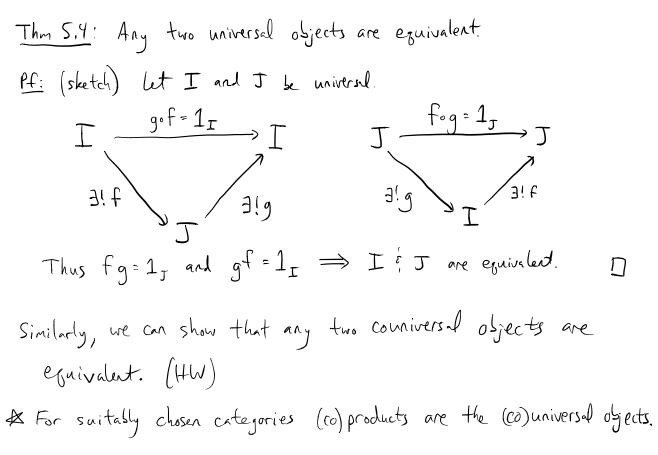
6

<u>Def:</u> A	morphism fe Hone	(A,B) is a	a:	7		
· Mon	omorphism if f	$q_1 = f_{q_2} =$	$=) g_1 = g_2$			
• <u>epimorphism</u> if $g_1 f = g_2 f \implies g_1 = g_2$						
• isomorphism if $\exists g \in Hom_e(B, A)$ with $fg = 1_B$ and $gf = 1_A$						
In this case, we say that A and B are equivalent.						
Remark: Given a collection of objects {Xx: xEA}, we can define						
their product and <u>coproduct</u> ; see the beginning of these notes.						
<u>Examples</u> : (See HW for details)						
L Auropeo:	Dee HW for der	ais				
Category	Objects	Morphisms	Product	Coproduct		
Set	Sets	Functions	Cartesian prod.	Disjoint union		
Top	Top. spaces	Contin. Maps	Cartesian pood.	Disjoint union		
Grp	Gamps	Ho no morphisms	Direct product	Free product		
Ab	Abelian groups	Honomorphisms	Direct product	Direct sum		
Vectk	K-vector spaces		Direct product	Direct sum		
Remark: Any posit defines a category.						
Product,	and coproducts	are defined	via universal m	apping properties		
i.e., by the existence of certain uniquely determined						
morphisms						
This can be generalized.						

8

- <u>Def</u>: An object $T \in Ob(\mathcal{C})$ is <u>universal</u> (or initial) if for each $C_i \in Ob(\mathcal{C})$, $\exists ! p_i \in Hom_e(I, C_i)$.
 - An object $T \in Ob(C)$ is <u>couniversal</u> (or terminal) if for each $C_i \in Ob(C)$, $\exists ! \ L_i \in Hom_e(C_i, T)$.
 - An initial and terminal object is a zero object.

Examples	Category	Universal (initial)	Couniversal (terminal)
	Set	Ø	{x} (any x)
	Top	Ø	{x}
	Grp	1	1



$$\begin{split} & \textcircled{P}_{\mathsf{E}} \operatorname{treey} \operatorname{tops} \operatorname{t$$

P<u>F</u>HW,

Examples

$$\square \underbrace{e=Set}_{f_1}: A \hookrightarrow A_1 \qquad A_1 \land A_2 \qquad A_2 \land A_1 \land A_2 \qquad A_2 \land A_1 \land A_2 \qquad A_2 \land A_2 \land$$

$$\begin{array}{c} \hline \label{eq:linearity} \hline \label{eq:linearity} \hline \end{bmatrix} \\ \hline \end{bmatrix} \hline \end$$

