7. Free groups, free objects, and group presentations

Goal of this section: We've seen group presentations like (i) $D_y = \langle r, f | r^q = f^2 = l, rfr = r \rangle$. (ii) $\mathbb{Z} \times \mathbb{Z} = \langle a, b | ab = ba \rangle$ $(iii) \mathbb{Z}_{5} = \langle X | X^{5} = I \rangle$ But what does this really mean? For example, take G={1}, r=f=1. Then r, f certainly "satify" the presultation in (i). Same for $G = \{1, -1\} \cong \mathbb{Z}_{2}$. To formulize the notion of a group presentation, we'll need to introduce free groups, and for that we'll need free semigroups. Def: A <u>semigroup</u> is a nonempty set with an associative Linary operation (think: "group, with identity i inverses optional") A <u>senigroup homomorphism</u> is a function f: X→Y with f(x,x)=f(x,)f(x) for all $x_{i_1}, x_2 \in X$. If f is bijective, then $X \cong Y$. Def: A semigroup X is free on a set S if there is a function j: S >> X s.t. for any other function $S \xrightarrow{J} X$ k f $F: X \rightarrow Y$ s.t. $f_{i} = k$ E_{xample} : let $S = \{1\}$ and $N = \{1, 2, 3, ...\}$. Then (N, +) is a free semigroup on S with j(1)=1. (Verity on HW.)

 \Box

This means that there every semigroup (or group) on one generator is a quotient of IN, e.g.,

<u>Prop 7.1</u>: If a free semigroup exists on S, it is unique up to isomorphism.

PE: HW.

Thm 7.2: IF $S \neq \emptyset$, then there exists a free semigroup on S. Pf: We will construct it explicitly. Set $X = S \cup (S \times S) \cup (S \times S \times S) \cup \cdots$ "all finite words over S" Define a Sinary operation of concatenation: $(a_1, \ldots, a_m)(b_1, \ldots, b_k) = (a_1, \ldots, a_m, b_1, \ldots, b_k).$ This is associative, thus X is a semigroup. Let $j: S \rightarrow X$ be the inclusion map: j(x) = x.Claim: X is free on S. To show this, Let $k: S \rightarrow Y$ be a function to a semigroup Define $f: X \rightarrow Y$ by $f((a_1, \ldots, a_m)) = k(a_1) \cdots k(a_n).$ Check: F is a homon $i, f_j = k$

 \square

Uniquences: Say
$$g: X \rightarrow Y$$
 also satisfies $f_j: g_j = k$.
Then $g((a_{1,...,a_m})) = g((ja_{1,...,ja_m}))$
 $= g(ja) \dots g(ja_m)$
 $= g(ja) \dots g(ja_m)$
 $= k(a_1) \dots k(a_m)$
 $= f(ja_1) \dots f(ja_m) = f((a_{1,...,a_m})) \Longrightarrow f = g$.
Since $\exists! f$ st: $f_j = k$, X is a free semigroup on S.
Pop 7.3: (Quotient semigroups if their universal proporty)
let Y be a semigroup and R an equivalence relation satisfying
 $xRy = 2Rw \implies x2Ryw$ [i.e., it is well-defined wet the operation)
Then Y/R is a semigroup if $\overline{x} \overline{y} := \overline{xy}$
 $uith fg = h$ and satisfying homomorphism
with fg = h and satisfying homomorphism
with fg = h and satisfying h(x)=h(z) whenever xRy ."
h other words: "every homomorphism respecting R factors through Y/R."
 $Pf: Existence: f((\overline{x})) := f(g(x)) = h(x)$.
 $uaiguness: If fg = gg, then f=g because g is an equi
 $uf = 3$ function $\varphi: S \rightarrow F$ st for any other
function $\theta: S \rightarrow G$ to a group, $\exists!$ homomorphism
 $f: F \rightarrow G$ st. $f\varphi = \theta$.$

B
Goal: We'll show that free groups (if they exist) are unique up
to isomorphism, and then we'll show they exist by constructing then
as quotients of free semigroups.
Prop 7.4: (Uniqueness) If a free group exists on
$$S \neq \emptyset$$
, it is unique
up to isomorphism, and ϕ is 1-1.
Pf: Uniqueness: Exercise (HeV)
Injectivity of ϕ : Suppose ϕ were not 1-1, and $a=b$ but $\phi(a)=\phi(b)$.
Define $\Theta: S \longrightarrow Z$
 $a \mapsto 1$
 $b \mapsto 2$
 $c \mapsto 0$ $c \neq a, b$
Then $I = \Theta(a) = f \phi(a) = f \phi(b) = \Theta(b) = 2$.
Thus, as such $f: F \to Z$ can exist with $f \phi = \theta$, so F is not free
This? (Existence). If $S \neq \phi$, then there is a free group F on S.
Pf: Choose a set S' with $|S| = |S'|$, $S \cap S' = \phi$, and put $T = SuS'$.
(think of S' as the "inverses" of elts in S.)
Ut $s \mapsto s'$ be a 1-1 correspondence blus S and S', and
 $s' \mapsto s(s)' = s' = S$ the inverse map $S' \to S$.
Thus, the the free semigroup on T (exists by Thm, 7.2).
If $g: X \to G$ is a horom to a group, cell g proper if
 $g(s') = g(s)^{+1}$ for all set S.

It follows easily that
$$g(t') = g(t)^{-1}$$
 for all $t \in T$.
A Define a relation R on X where:
 xRy iff $g(x) = g(y)$ holds whenever $g: X \rightarrow G$ is proper.
Material $g(X \oplus y^{-1}) = g(x)$ so $X \oplus y^{-1} R x$.
Check: R is an equiv. relation on X
 xRy and $zRw \implies x \ge R \oplus w$.
Therefore, $F = X/R$ is a semigroup and $g: X \rightarrow X/R$ is a
human. (Prop 7.3). Write $\overline{x} = g(x)$
Note that $\overline{xy} = \overline{xy}$ and $\overline{x'} = \overline{x'}$.
Choise f is a group
(ii) F is free on S.
 $\frac{Pf \circ f \ claim}{r}$:
(i) F is a group
Choise $s \in S$, $x \in X$ (under natural inclusion, $s, s' \in X$).
Identity: Well show $\overline{ss'} \in X/R$ is the identity eff.
If $g: X \rightarrow G$ is proper, $g(ss') = 1$, and so $g(ss'x) = g(x)$.
By definition of R, $xRxss' \iff \overline{x} = \overline{xss'} = \overline{xss'}$
 $similarly, \overline{ss'} \overline{x} = \overline{x}$, so $\overline{ss'} = 1_F$.
Intercy: let $x = t_1t_2 \cdots t_k$, $t_i \in T$.
Then $(\overline{x})^{-1} = \overline{y}$, where $y = t'_k \cdots t'_k t'_i$.

Since X is free on T, 3!
$$T: X \rightarrow G$$
 st. $T_{j} = \Theta^{j}$. (Prop 7.2)
By Prop 7.3 (Univ. property), 3! $f: F \rightarrow G$ s.t. $f_{q} = T$.
Note: $f \Phi = f_{q}ji = T_{j}i = \Theta^{j}i = \Theta$.
Unipercess of f: Suppose $\exists h: F \rightarrow G$ s.t. $h \Phi = \Theta$.
* If we can show $h_{q} = f_{q} = T$, then uniqueness
of h will follow from Prop 7.3.
Note: $h_{q}ji = \Theta = \Theta^{j}i = T_{ij} = f_{Q}ji$.
Thus $h_{q}(s) = f_{q}(s)$ (= $T(s)$) $\forall s \in S = X$.
Need to show $h_{q}(s) = f_{q}(s)$ (= $T(s)$) $\forall s \in S' \subseteq X$.
Recult that $q(s') = q(s)^{-1}$ in $F = X/R$.
Thus $h(q(s)) = h(q(s)^{-1}) = (h_{q}(s))^{-1} = f(q(s)) = f(q(s))$.
Since Φ is 1-1, we identify $s \in S$ with $\phi(s) \in F$, and just say $S \subseteq F$.
The elements of S are generators of F, and we write $F = F_{S} = \langle S \rangle$.
Recult By definition, any function $\Theta:S \rightarrow G$
(arbitrary G) can be extended uniquely to
a homon. $F: F_{S} \rightarrow G$ st $f \oplus = \Theta$.
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$
(1) $|S|=1$, say $S = \{s\}$ and (wh $\Phi: S \longrightarrow \mathbb{Z}$

Then the horizon
$$f: \mathbb{Z} \to G$$
 $S \xrightarrow{\phi} \mathbb{Z}$ $s \xrightarrow{\phi} 1$
 $1 \xrightarrow{\mu g}$ $\theta \xrightarrow{\varphi} \mathbb{Z}^{f}$ $\theta \xrightarrow{\varphi} \mathbb{Z}^{f}$
is the unique horizon $s.t$ $f \phi = \theta$.
Thus, \mathbb{Z} is free on S .
Note that $\langle g \rangle \cong \mathbb{Z}^{f}$ or \mathbb{Z}^{f} , thus every cyclic group is
the quotient of the free group on $\{s\}$ (one generator).
(2) (at $S = \{a, b\}$. Note that S_{3} is not cyclic; it has two
 $\{a, b\} \xrightarrow{\phi} F_{5}$ generators: $S_{3} = \langle (12), (123) \rangle$.
 $\{a, b\} \xrightarrow{\phi} f$ Define $\theta : \{a, b\} \longrightarrow S_{3} = \langle (12), (123) \rangle$.
 $a \xrightarrow{\mu group} (12)$
 $b \xrightarrow{\mu group} F_{5}$ is the set of all words over $S = \{a, b\}$
under concetenation, which we write as $\langle a, b | \rangle$; i.e.,

A More generally, if $G = \langle S \rangle$ and |S| = n, then \exists homom. $F_S \longrightarrow G$, i.e., every group is the guotient of a free group.

The map $\theta: S \rightarrow S_3$ extends to a unique honom. $f: F_S \rightarrow S_3$.

Big idea: The group Sz is generated by 2 elements, and is a guotient of the free group Fs, where |S| = 2.

2 generators, no relations.

Why:
$$S \xrightarrow{\Phi} F_{S}$$
 and F is surjective because $\langle S \rangle = 6$.
 $H = \frac{1}{2} (G)^{G} F$
Then $\frac{1}{2} (G)^{G} F$
 $F_{S} = F_{\alpha}$, they have the same
number of indux-2 subgroups.
Each is characterized uniquely as the kernel
of a surjection $f: F_{S} \rightarrow \mathbb{Z}_{2}$.
Clearly, there are $2^{|S|} - |$ such surjections.
So F_{S} has $2^{|S|} - |$ indux-2 subgroups, and F_{α} has $2^{|M|} - | \Rightarrow |S| = |M|$.
 $\frac{Case 2:}{S|} = \infty$. Set $T = SuS^{-1}$, so $|T| = |S|$.
 $|F_{S}| \leq 1 + |T| + |T \times T| + |T \times T| + ... = K_{0} |T| = |S|$.
Therefore, $|F_{S}| = |S|$, and so $|S| = |F_{S}| = |F_{\alpha}| = |U|$.
 $K = Suppose h: S \rightarrow U$ is bijective,
 $\Phi_{S}: S \rightarrow F_{S}$, $\Phi_{u}: U \rightarrow F_{u}$.
Then $\Phi_{u}h: S \rightarrow F_{a}$, so $\exists ! f: F_{S} \rightarrow F_{u}$ set $f\Phi_{s} = \Phi_{u}h$.
Similarly, $\Phi_{S}h^{-1}: U \rightarrow F_{S}$, so $\exists ! g:F_{u} \rightarrow F_{S}$ set $g\Phi_{u} = \Phi_{u}h^{-1}$.
Now, $gf: F_{S} \rightarrow F_{S}$ satisfies $\Phi_{S} = gf\Phi_{S} = 1_{S}\Phi_{S}$.
By uniqueness, $gf = 1_{F_{u}}$.

^[10] Similarly, fg = 1_E, so f f g are invoke isomorphisms, and
F_s ≈ Fu.
Def: The rank of a free group Fs is |S|.
Thm: Subgroups of free groups are free.
Thm: IF |<|S|, |U| ≤ No, then ∃ embedding Fs → Fu.
Proofs: Involve algebraic topology (covering spaces).
Not surprisingly, the concept of a "free" object can be defined
in a categorical section.
Def: A concrete category C where the objects
A ∈ Ob(C) have an underlying set structure F(A), and
(i) Every Fe Hone (A, B) is a function
on the underlying sets:

$$J(A) = \frac{J(F)}{J(B)} = F(B)$$

(ii) The identity marphism is the identity
function on the sets:
 $J(A) = \frac{J(F)}{J(B)} = F(B)$
(iii) Composition of functions on the sets $A = \frac{F}{J(B)} = \frac{J}{J(B)} = \frac{J(F)}{J(E)} = \frac{$

Non-examples:

- (1) Any directed graph défines a non-concrete category, assuming loops à transitive edges.
- (2) let G be a fixed group. $Ob(G) := \{G\}$ (i.e., one object). Hom $(G) := \{g : g \in G\}$. The identity element is 1_G .
- Def: let F be an object in a concrete category C, $S \neq 0$, and $\phi: S \longrightarrow F$ a map of sets. Then F is <u>free on S</u> if for any $A \in Ob(C)$ and set map $\theta: S \longrightarrow A$, $\exists ! f \in Hom_e(F, A)$ s.t. $f \phi = \theta$ (as maps of sets).
- Thm f.f: let F, $F' \in Ob(C)$ be free objects on S, S', respectively, where |S| = |S'|. Then F and F' are equivalent.

Pf: HW.

Free objects are <u>universal</u> (i.e., initial) objects in an appropriately Constructed category, like how co-products were.

Remark: Every group G generated by S is a quotient of FS.
By the FHT,
$$\langle S \rangle = F_S/K$$
, for some $K \leq F_S$.
We keek the form that the form that the form t

Thus every group
$$G = \langle S \rangle$$
 is isomorphic to a provided $F_S/K_{,}^{[I]}$
where $K := \bigcap_{R \in N_{,} \in A_{,}} N_{, K}$.
We write this as $G = \langle S | R \rangle := \langle S | r = 1 + r \in R \rangle$, called
a presentation of G .
 $E_{X:} = C_n = \langle a | a^n = 1 \rangle$.
 $\mathbb{Z}^2 = \langle a, b | ab = ba \rangle$.
 $Q_8 = \langle i, j, k | i^2 = j^{1_2} k^{1_2} i j k = -1 \rangle$.
Prop 7.8: Suppose $G_1 = \langle S | R_1 \rangle$, $G_2 = \langle S | R_2 \rangle$, and $R_1 = R_{e}$.
Then 3 homom $g: G_1 \rightarrow S_2$.
Pf: Assume $\pi: F_S \rightarrow F_S/K_1 \cong G_1$ is the canonical guotient map.
and $K_1 = \bigcap_{R \in N_{,} \in A_{,}} N_{, K_1} \cong G_2$ set inclusions.
Since F_S is free, $\exists! f: F_S \rightarrow G_2$ set $\theta = f \varphi$.
Since $R_1 \subseteq R_2$, ker $\pi \leq \ker f$, so by the universal prop. of
guotient groups, $\exists!$ homom. $g: G_1 \rightarrow G_2$ s.t. $f = g \pi$.
To summarize Pop 7.8:
• "Adding relations induces a homomorphism"
• $\langle S | R \rangle$ is the "freest group subject to the relations."

Note: Removing generator s; is equivalent to adding the relation s;=1.
Thus, if
$$S_1 \supseteq S_2$$
 and $R_1 \subseteq R_2$, then \exists homon. $\langle S_1 | R_1 \rangle \rightarrow \langle S_2, T_2 \rangle$.
Actually, we don't need $S_1 \supseteq S_2$, but rather just any surjection
 $\Theta: S_1 \rightarrow S_2$ that "respects relations," i.e., $r=1 \Rightarrow \Theta(r)=1$.
More precisely, we have established the following:
 $\underbrace{\operatorname{Cor} 7.9:}_{i} \operatorname{Suppose} G_1 = \langle S | R \rangle$ and $G_2 = \langle S' | R' \rangle$ such that
(i) $\exists \Theta: S \rightarrow S';_{i} \operatorname{Say} \Theta(s) = s'$ and extending to $\Theta: R \rightarrow R'$.
(ii) $r'=1 \forall r' \in R$ (i.e., $\Theta(r) = 1 \forall r \in R$).
Then \exists homom. $g: G_1 \rightarrow S_2$.

$$\underline{E}_{Xamples}:$$
(1) Let $G_1 = \langle a \mid a^n = 1 \rangle$ and $G_2 = \langle b \mid b^n = 1 \rangle$, $m \mid n$.
Then $\theta: a \mapsto b$ and $\theta(a^n) = b^n = 1$, so θ extends to a horizon.
 $G_1 \longrightarrow G_2$. (In find, $\mathbb{Z}_n \longrightarrow \mathbb{Z}_m$.)
(2) Let $G = \langle a, b \mid a^3 = 1, b^2 = 1, abab = 1 \rangle$.
Note: $a^3 = 1 \implies a^{-1} = a^2$ $\implies abab = 1 \iff ab = ba^{-1} = ba^2$.
Note: $a^3 = 1 \implies a^{-1} = 5$ $\implies abab = 1 \iff ab = ba^{-1} = ba^2$.
Thus, every element can be written in the form $b^i a^j$, where
 $i=0, 1$ and $j=0, 1, 2 \implies |G| \le 6$.
So $G \cong 1$, \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_5 , \mathbb{Z}_6 , or \mathbb{S}_3 .
Which one is it?

[4]

Consider
$$\sigma = (123), \tau = (12)$$
 in $S_3 = \langle \sigma, \tau \rangle$.
Let $\Theta(a) = \sigma$ and $\Theta(b) = \tau$.
Check: $\Theta(a^3) = \sigma^3 = 1$, $\Theta(b^2) = \tau^{n} = 1$, $\Theta(abab) = \sigma\tau\sigma\tau = 1$.
By Car 7.9, $\exists g: G \rightarrow S_3$, and so $(G | \geqslant 6$.
Therefore, $G \cong S_3 = \langle a, b | a^3, b^2, abab \rangle$.
(3) Let $G = \langle x, y | xy = y^2 x, yx = x^2 y \rangle$
Note: $xy = y^2 x \Rightarrow y^2(xy) = yx = x^2 y = x(xy) \Rightarrow x = y^1$
Thus, $I = xy = y^2 x \Rightarrow y^2(yx) = y \Rightarrow y = 1 \Rightarrow x = 1$.
Hence, $G = 1$.
(4) Let $G = \langle a, b | a^n = b^n = 1$, $ab = b^n a \rangle$
Note that $a^1 = a^{n-1}$, $b^{-1} = b$, $ab = ba^{n-1}$.
Thus, every element can be written as a^1b^1 , $O \le i \le n$, $O \le j \le 2$,
hence $|G| \ge 2n$.
To show $|G| \ge 2n$, we'll denonstrate $G \longrightarrow D_n$.
Consider $D = \langle r, f \rangle$, where $r = 2\pi/n - rotation$, $f = reflection$.
Define $\Theta(a) = r$, $\Theta(b) = f$.
Thus $\exists G \longrightarrow D_n$, and since $|G| \le |D_n|$, then $G \cong D_n$
Fun fast Given two finitely presented groups $G_1 = \langle S_1 | R_1 \rangle$ and
 $G_2 = \langle S_2 | R_2 \rangle$ (i.e., $|S_1|, |R_1| < \infty$), determining with the $G_1 \cong G_2$ is,
in general, computationally undecidable!