## Section 2.1: Rings and ideals

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

## What is a ring?

#### Definition

A ring is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$x(y+z) = xy + xz$$
 and  $(y+z)x = yx + zx \quad \forall x, y, z \in R$ .

#### Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that  $xy \neq yx$ ).

#### A few more terms

If xy = yx for all  $x, y \in R$ , then R is commutative.

If R has a multiplicative identity  $1=1_R\neq 0$ , we say that "R has identity" or "unity", or "R is a ring with 1."

A subring of R is a subset  $S \subseteq R$  that is also a ring.

# What is a ring?

## Examples

- 1.  $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$  are all commutative rings with 1.
- 2.  $\mathbb{Z}_n$  is a commutative ring with 1.
- 3. For any ring R with 1, the set  $M_n(R)$  of  $n \times n$  matrices over R is a ring. It has identity  $1_{M_n(R)} = I_n$  iff R has 1.
- 4. For any ring R, the set of functions  $F = \{f : R \to R\}$  is a ring by defining

$$(f+g)(r) = f(r) + g(r),$$
  $(fg)(r) = f(r)g(r).$ 

- 5. The set  $S = 2\mathbb{Z}$  is a subring of  $\mathbb{Z}$  but it does *not* have 1.
- 6.  $S = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{R} \right\}$  is a subring of  $R = M_2(\mathbb{R})$ . However, note that

$$\mathbf{1}_{R} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \text{but} \qquad \mathbf{1}_{S} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

7. If R is a ring and x a variable, then the set

$$R[x] = \{a_n x^n + \cdots + a_1 x + a_0 \mid a_i \in R\}$$

is called the polynomial ring over R.

## Another example: the quaternions

Recall the (unit) quaternion group:

$$Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = -1, \ ij = k \rangle.$$



Allowing addition makes them into a ring  $\mathbb{H}$ , called the quaternions, or Hamiltonians:

$$\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}.$$

The set  $\mathbb{H}$  is isomorphic to a subring of  $M_4(\mathbb{R})$ , the real-valued  $4 \times 4$  matrices:

$$\mathbb{H} = \left\{ \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\} \subseteq M_4(\mathbb{R}).$$

Formally, we have an embedding  $\phi \colon \mathbb{H} \hookrightarrow M_4(\mathbb{R})$  where

$$\phi(i) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \phi(j) = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \phi(k) = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

We say that  $\mathbb{H}$  is represented by a set of matrices.

### Units and zero divisors

#### Definition

Let R be a ring with 1. A unit is any  $x \in R$  that has a multiplicative inverse. Let U(R) be the set (a multiplicative group) of units of R.

An element  $x \in R$  is a left zero divisor if xy = 0 for some  $y \neq 0$ . (Right zero divisors are defined analogously.)

### Examples

- 1. Let  $R = \mathbb{Z}$ . The units are  $U(R) = \{-1, 1\}$ . There are no (nonzero) zero divisors.
- 2. Let  $R=\mathbb{Z}_{10}.$  Then 7 is a unit (and  $7^{-1}=3$ ) because  $7\cdot 3=1.$  However, 2 is not a unit.
- 3. Let  $R = \mathbb{Z}_n$ . A nonzero  $k \in \mathbb{Z}_n$  is a unit if gcd(n, k) = 1, and a zero divisor if  $gcd(n, k) \geq 2$ .
- 4. The ring  $R = M_2(\mathbb{R})$  has zero divisors, such as:

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The groups of units of  $M_2(\mathbb{R})$  are the invertible matrices.

## Group rings

Let R be a commutative ring (usually,  $\mathbb{Z}$ ,  $\mathbb{R}$ , or  $\mathbb{C}$ ) and G a finite (multiplicative) group. We can define the group ring RG as

$$RG := \left\{ a_1g_1 + \cdots + a_ng_n \mid a_i \in R, \ g_i \in G \right\},\,$$

where multiplication is defined in the "obvious" way.

For example, let  $R = \mathbb{Z}$  and  $G = D_4 = \langle r, f \mid r^4 = f^2 = rfrf = 1 \rangle$ , and consider the elements  $x = r + r^2 - 3f$  and  $y = -5r^2 + rf$  in  $\mathbb{Z}D_4$ . Their sum is

$$x + y = r - 4r^2 - 3f + rf,$$

and their product is

$$xy = (r + r^2 - 3f)(-5r^2 + rf) = r(-5r^2 + rf) + r^2(-5r^2 + rf) - 3f(-5r^2 + rf)$$
  
=  $-5r^3 + r^2f - 5r^4 + r^3f + 15fr^2 - 3frf = -5 - 8r^3 + 16r^2f + r^3f$ .

#### Remarks

- The (real) Hamiltonians  $\mathbb{H}$  is *not* the same ring as  $\mathbb{R}Q_8$ .
- If  $g \in G$  has finite order |g| = k > 1, then RG always has zero divisors:

$$(1-g)(1+g+\cdots+g^{k-1})=1-g^k=1-1=0.$$

■ RG contains a subring isomorphic to R, and the group of units U(RG) contains a subgroup isomorphic to G.

## Types of rings

#### Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. A commutative division ring is a field.

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: "field without inverses".)

We have the following containments:. Moreover:

 $\mathsf{fields} \subsetneq \mathsf{division} \ \mathsf{rings}$ 

 $\mathsf{fields} \subsetneq \mathsf{integral} \; \mathsf{domains} \subsetneq \mathsf{all} \; \mathsf{rings}$ 

### Examples

- $\blacksquare \mathbb{Z}_p$  is a field for p prime.
- Rings that are not integral domains:  $\mathbb{Z}_n$  (composite n),  $2\mathbb{Z}$ ,  $M_n(\mathbb{R})$ ,  $\mathbb{Z} \times \mathbb{Z}$ ,  $\mathbb{H}$ .
- Integral domains that are not fields (or even division rings):  $\mathbb{Z}$ ,  $\mathbb{Z}[x]$ ,  $\mathbb{R}[x]$ ,  $\mathbb{R}[[x]]$ .
- Division ring but not a field: ℍ.

### Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation:  $ax = ay \implies x = y$ . However, this need not hold in all rings!

### Examples where cancellation fails

- In  $\mathbb{Z}_6$ , note that  $2 = 2 \cdot 1 = 2 \cdot 4$ , but  $1 \neq 4$ .
- In  $M_2(\mathbb{R})$ , note that  $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ .

However, everything works fine as long as there aren't any (nonzero) zero divisors.

## Proposition

Let R be an integral domain and  $a \neq 0$ . If ax = ay for some  $x, y \in R$ , then x = y.

#### Proof

If 
$$ax = ay$$
, then  $ax - ay = a(x - y) = 0$ .

Since  $a \neq 0$  and R has no (nonzero) zero divisors, then x - y = 0.

# Finite integral domains

#### Lemma

If R is an integral domain and  $0 \neq a \in R$  and  $k \in \mathbb{N}$ , then  $a^k \neq 0$ .

### Theorem

Every finite integral domain is a field.

### Proof

Suppose R is a finite integral domain and  $0 \neq a \in R$ . It suffices to show that a has a multiplicative inverse.

Consider the infinite sequence  $a, a^2, a^3, a^4, \ldots$ , which must repeat.

Find i > j with  $a^i = a^j$ , which means that

$$0 = a^{i} - a^{j} = a^{j} (a^{i-j} - 1).$$

Since R is an integral domain and  $a^{j} \neq 0$ , then  $a^{i-j} = 1$ .

Thus, 
$$a \cdot a^{i-j-1} = 1$$
.

#### Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a normal subgroup. The analogue of this for rings are (two-sided) ideals.

#### Definition

A subring  $I \subseteq R$  is a left ideal if

$$rx \in I$$
 for all  $r \in R$  and  $x \in I$ .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write  $l \leq R$ .

## Examples

- $\blacksquare$   $n\mathbb{Z} \subseteq \mathbb{Z}$ .
- If  $R = M_2(\mathbb{R})$ , then  $I = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} : a, c \in \mathbb{R} \right\}$  is a left, but *not* a right ideal of R.
- The set  $\operatorname{Sym}_n(\mathbb{R})$  of symmetric  $n \times n$  matrices is a subring of  $M_n(\mathbb{R})$ , but *not* an ideal.

#### Ideals

### Remark

If an ideal I of R contains a unit u, then I = R.

### Proof

Suppose  $u \in I$ , and take an arbitrary  $r \in R$ .

Then  $(ru^{-1})u \in I$ , and so  $r1 = r \in I$ . Therefore, I = R.

Let's compare the concept of a normal subgroup to that of an ideal:

normal subgroups are characterized by being invariant under conjugation:

$$H \leq G$$
 is normal iff  $ghg^{-1} \in H$  for all  $g \in G$ ,  $h \in H$ .

(left) ideals of rings are characterized by being invariant under (left) multiplication:

 $I \subseteq R$  is a (left) ideal iff  $ri \in I$  for all  $r \in R$ ,  $i \in I$ .

## Ideals generated by sets

#### Definition

The left ideal generated by a set  $X \subset R$  is defined as:

$$\langle X \rangle := \bigcap \{ I : I \text{ is a left ideal s.t. } X \subseteq I \subseteq R \}.$$

This is the smallest left ideal containing X.

There are analogous definitions by replacing "left" with "right" or "two-sided".

Recall the two ways to define the subgroup  $\langle X \rangle$  generated by a subset  $X \subseteq G$ :

- "Bottom up": As the set of all finite products of elements in X;
- "Top down": As the intersection of all subgroups containing X.

### Proposition

Let R be a ring with unity. The (left, right, two-sided) ideal generated by  $X \subseteq R$  is:

- Left:  $\{r_1x_1 + \cdots + r_nx_n : n \in \mathbb{N}, r_i \in R, x_i \in X\}$ ,
- Right:  $\{x_1r_1 + \cdots + x_nr_n : n \in \mathbb{N}, r_i \in R, x_i \in X\}$ ,
- Two-sided:  $\{r_1x_1s_1 + \cdots + r_nx_ns_n : n \in \mathbb{N}, r_i, s_i \in R, x_i \in X\}$ .

### Ideals and quotients

Since an ideal I of R is an additive subgroup (and hence normal), then:

- $\blacksquare R/I = \{x + I \mid x \in R\}$  is the set of cosets of I in R;
- $\blacksquare$  R/I is a quotient group; with the binary operation (addition) defined as

$$(x+1) + (y+1) := x + y + I.$$

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

## Proposition

If  $I \subseteq R$  is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where multiplication is defined by

$$(x+I)(y+I) := xy + I.$$

#### Proof

We need to show this is well-defined. Suppose x+I=r+I and y+I=s+I. This means that  $x-r\in I$  and  $y-s\in I$ .

It suffices to show that xy + I = rs + I, or equivalently,  $xy - rs \in I$ :

$$xy - rs = xy - ry + ry - rs = (x - r)y + r(y - s) \in I$$
.

#### Finite fields

Recall that  $\mathbb{Z}_p$  is a field if p is prime, and that finite integral domains are fields. But what do these "other" finite fields look like?

Let  $R = \mathbb{Z}_2[x]$  be the polynomial ring over the field  $\mathbb{Z}_2$ .

The polynomial  $f(x) = x^2 + x + 1$  is irreducible over  $\mathbb{Z}_2$  because it does not have a root. (Note that  $f(0) = f(1) = 1 \neq 0$ .)

Consider the ideal  $I = \langle x^2 + x + 1 \rangle = \{(x^2 + x + 1) \cdot f(x) \mid f \in \mathbb{Z}_2[x]\}.$ 

In the quotient ring R/I, we have the relation  $x^2 + x + 1 = 0$ , or equivalently,  $x^2 = -x - 1 = x + 1$ 

The quotient has only 4 elements:

$$0+I$$
,  $1+I$ ,  $x+I$ ,  $(x+1)+I$ .

As with the quotient group (or ring)  $\mathbb{Z}/n\mathbb{Z}$ , we usually drop the "I", and just write

$$R/I = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle \cong \{0, 1, x, x + 1\}.$$

It is easy to check that this is a field.

### Finite fields

Here is a Cayley diagram, and the operation tables for  $R/I = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ :



| +   | 0   | 1   | х   | x+1 |
|-----|-----|-----|-----|-----|
| 0   | 0   | 1   | х   | x+1 |
| 1   | 1   | 0   | x+1 | X   |
| x   | x   | x+1 | 0   | 1   |
| ×+1 | x+1 | х   | 1   | 0   |

| X   | 1   | х   | x+1 |
|-----|-----|-----|-----|
| 1   | 1   | х   | x+1 |
| x   | x   | x+1 | 1   |
| x+1 | x+1 | 1   | х   |

#### Theorem

There exists a finite field  $\mathbb{F}_q$  of order q, which is unique up to isomorphism, iff  $q = p^n$  for some prime p. If n > 1, then this field is isomorphic to the quotient ring

$$\mathbb{Z}_p[x]/\langle f \rangle$$
,

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over  $\mathbb{F}_{2^8} = \mathbb{F}_{256}$ . This is what allows your CD to play despite scratches.

# Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

## Group theory

- The quotient group G/N exists iff N is a normal subgroup.
- A homomorphism is a structure-preserving map: f(x \* y) = f(x) \* f(y).
- The kernel of a homomorphism is a normal subgroup: Ker  $\phi \subseteq G$ .
- For every normal subgroup  $N \subseteq G$ , there is a natural quotient homomorphism  $\phi \colon G \to G/N, \ \phi(g) = gN.$
- There are four standard isomorphism theorems for groups.

## Ring theory

- The quotient ring R/I exists iff I is a two-sided ideal.
- A homomorphism is a structure-preserving map: f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).
- The kernel of a homomorphism is a two-sided ideal: Ker  $\phi \subseteq R$ .
- For every two-sided ideal  $I \subseteq R$ , there is a natural quotient homomorphism  $\phi \colon R \to R/I$ ,  $\phi(r) = r + I$ .
- There are four standard isomorphism theorems for rings.

# Ring homomorphisms

#### Definition

A ring homomorphism is a function  $f: R \to S$  satisfying

$$f(x+y)=f(x)+f(y)$$
 and  $f(xy)=f(x)f(y)$  for all  $x,y\in R$ .

A ring isomorphism is a homomorphism that is bijective.

The kernel  $f: R \to S$  is the set  $\operatorname{Ker} f := \{x \in R : f(x) = 0\}$ .

### Examples

- 1. The function  $\phi \colon \mathbb{Z} \to \mathbb{Z}_n$  that sends  $k \mapsto k \pmod{n}$  is a ring homomorphism with  $\text{Ker}(\phi) = n\mathbb{Z}$ .
- 2. For a fixed real number  $\alpha \in \mathbb{R}$ , the "evaluation function"

$$\phi \colon \mathbb{R}[x] \longrightarrow \mathbb{R}, \qquad \phi \colon p(x) \longmapsto p(\alpha)$$

is a homomorphism. The kernel consists of all polynomials that have  $\alpha$  as a root.

3. The following is a homomorphism, for the ideal  $I = \langle x^2 + x + 1 \rangle$  in  $\mathbb{Z}_2[x]$ :

$$\phi: \mathbb{Z}_2[x] \longrightarrow \mathbb{Z}_2[x]/I, \qquad f(x) \longmapsto f(x) + I.$$

# The isomorphism theorems for rings

### Fundamental homomorphism theorem

If  $\phi \colon R \to S$  is a ring homomorphism, then  $\operatorname{Ker} \phi$  is an ideal and  $\operatorname{Im}(\phi) \cong R/\operatorname{Ker}(\phi)$ .



## Proof (exercise)

The statement holds for the underlying additive group R. Thus, it remains to show that  $\operatorname{Ker} \phi$  is a (two-sided) ideal, and the following map is a ring homomorphism:

$$g: R/I \longrightarrow \operatorname{Im} \phi, \qquad g(x+I) = \phi(x).$$

# The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then

- (i) The sum  $S + I = \{s + i \mid s \in S, i \in I\}$  is a subring of R and the intersection  $S \cap I$  is an ideal of S.
- (ii) The following quotient rings are isomorphic:

$$(S+I)/I\cong S/(S\cap I).$$



### Proof (sketch)

S+I is an additive subgroup, and it's closed under multiplication because

$$s_1, s_2 \in S, \ i_1, i_2 \in I \implies (s_1 + i_1)(s_2 + i_2) = \underbrace{s_1 s_2}_{\in S} + \underbrace{s_1 i_2 + i_1 s_2 + i_1 i_2}_{\in I} \in S + I.$$

Showing  $S \cap I$  is an ideal of S is straightforward (exercise).

We already know that  $(S+I)/I \cong S/(S \cap I)$  as additive groups.

One explicit isomorphism is  $\phi \colon s + (S \cap I) \mapsto s + I$ . It is easy to check that  $\phi \colon 1 \mapsto 1$  and  $\phi$  preserves products.

# The third isomorphism theorem for rings

#### Freshman theorem

Suppose R is a ring with ideals  $J\subseteq I$ . Then I/J is an ideal of R/J and  $(R/J)/(I/J)\cong R/I\,.$ 



(Thanks to Zach Teitler of Boise State for the concept and graphic!)

## The fourth isomorphism theorem for rings

### Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (& ideals) of R/I and subrings (& ideals) of R that contain I. In particular, every ideal of R/I has the form J/I, for some ideal J satisfying  $I \subseteq J \subseteq R$ .



subrings & ideals that contain I



subrings & ideals of R/I

#### Maximal ideals

#### Definition

An ideal I of R is maximal if  $I \neq R$  and if  $I \subseteq J \subseteq R$  holds for some ideal J, then J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

## Examples

- 1. If  $n \neq 0$ , then the ideal  $M = \langle n \rangle$  of  $R = \mathbb{Z}$  is maximal if and only if n is prime.
- 2. Let  $R = \mathbb{Q}[x]$  be the set of all polynomials over  $\mathbb{Q}$ . The ideal M = (x) consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring  $\mathbb{Q}[x]/\langle x \rangle$  have the form  $f(x) + M = a_0 + M$ .

3. Let  $R = \mathbb{Z}_2[x]$ , the polynomials over  $\mathbb{Z}_2$ . The ideal  $M = \langle x^2 + x + 1 \rangle$  is maximal, and  $R/M \cong \mathbb{F}_4$ , the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.

### Maximal ideals

#### Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal  $I \subseteq R$ .

- (i) I is a maximal ideal;
- (ii) R/I is simple;
- (iii) R/I is a field.

#### Proof

The equivalence (i) $\Leftrightarrow$ (ii) is immediate from the Correspondence Theorem.

For (ii) $\Leftrightarrow$ (iii), we'll show that an arbitrary ring R is simple iff R is a field.

" $\Rightarrow$ ": Assume R is simple. Then  $\langle a \rangle = R$  for any nonzero  $a \in R$ .

Thus,  $1 \in \langle a \rangle$ , so 1 = ba for some  $b \in R$ , so  $a \in U(R)$  and R is a field.  $\checkmark$ 

" $\Leftarrow$ ": Let  $I \subseteq R$  be a nonzero ideal of a field R. Take any nonzero  $a \in I$ .

Then  $a^{-1}a \in I$ , and so  $1 \in I$ , which means I = R.  $\checkmark$ 

### Prime ideals

### Definition

Let R be commutative. An ideal  $P \subset R$  is prime if  $ab \in P$  implies either  $a \in P$  or  $b \in P$ .

Note that  $p \in \mathbb{N}$  is a prime number iff p = ab implies either a = p or b = p.

## Examples

- 1. The ideal (n) of  $\mathbb{Z}$  is a prime ideal iff n is a prime number (possibly n = 0).
- 2. In the polynomial ring  $\mathbb{Z}[x]$ , the ideal  $I = \langle 2, x \rangle$  is prime. It consists of all polynomials whose constant coefficient is even.

### **Theorem**

An ideal  $P \subseteq R$  is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is immediate:

## Corollary

In a commutative ring, every maximal ideal is prime.

# Partially ordered sets

### Definition

A partial ordering (poset) on a set  ${\mathcal P}$  is a binary relation that is

- (i) Reflexive:  $a \le a$ ,
- (ii) Antisymmetric:  $a \le b$  and  $b \le a \Longrightarrow a = b$ ,
- (iii) Transitive:  $a \le b \le c \implies a \le c$ .

## **Examples**

- 1. Let  $\mathcal{P} = \mathbb{N}$  with the standard ordering,  $\leq$ .
- 2.  $\mathcal{P} = \mathbb{N}$  where  $d \leq n$  iff  $d \mid n$ . [Note: This is not a poset if  $\mathcal{P} = \mathbb{Z}$ .]
- 3. Let  $\mathcal{P} \subseteq 2^{\mathcal{S}}$ , with relation  $\subseteq$ .
- 4. Any acyclic directed graph describes a poset.

### **Definition**

A linear ordering on  $\mathcal C$  is a partial ordering in which any two elements are compariable, i.e.,  $a \leq b$  or  $b \leq a$ .

### Zorn's lemma and the axiom of choice

#### Definition

- 1. A chain in a poset  $\mathcal{P}$  is a nonempty subset  $\mathcal{C} \subseteq \mathcal{P}$  that is linearly ordered.
- 2. An upper bound for a chain  $\mathcal C$  is an element  $b \in \mathcal P$  such that  $a \leq b$  for all  $a \in \mathcal C$ . [Note: b need not be in  $\mathcal C$ .]
- 3. A maximal element in  $\mathcal C$  is an element  $m \in \mathcal C$  such that if  $a \in \mathcal C$  and  $m \le a$ , then a = m.

### Theorem

The following are equivalent:

- 1. Axiom of choice: Every collection  $X = \{S_i\}_{i \in I}$  of nonempty sets has a choice function,  $f = (f_i)_{i \in I}$ .
- 2. Zorn's lemma: If  $\mathcal P$  is a nonempty poset in which every chain has an upper bound, then  $\mathcal P$  has a maximal element.
- 3. Well-ordering principle: Every nonempty set can be well-ordered.

# Consequences of the axiom of choice

- 1. The cartesian product of nonempty sets is nonempty.
- 2. Every ideal in R is contained in a maximal ideal.
- 3. Every vector space has a basis.
- 4. The product of compact spaces is compact.
- 5. Every connected graph has a spanning tree.

## Proposition

If R is a ring with 1, then every ideal  $I \neq R$  is contained in a maximal ideal  $M \nleq R$ .

### **Proof**

Let  $\mathcal{P} = \{J \leq R \mid I \subseteq J \subsetneq R\}$ , ordered by inclusion.

Every chain  $\mathcal C$  has a maximal element,  $L_{\mathcal C}=\bigcup_{J\in\mathcal C}J$ , and hence an upper bound.

By Zorn's lemma, there is some maximal element M in  $\mathcal{P}$ , which is a maximal ideal.