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What is a ring?

Definition
A ring is an additive (abelian) group R with an additional binary operation
(multiplication), satisfying the distributive law:

x(y +z) =xy + xz and (v+z)x=yx+2x Vx,y,z€R.

Remarks
m There need not be multiplicative inverses.

m Multiplication need not be commutative (it may happen that xy # yx).

A few more terms

If xy = yx for all x,y € R, then R is commutative.

If R has a multiplicative identity 1 = 1z # 0, we say that “R has identity” or
“unity”, or “R is a ring with 1.”

A subring of R is a subset S C R that is also a ring.
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What is a ring?

Examples

1.
2.
3,

Z C Q C R C C are all commutative rings with 1.
Zn is a commutative ring with 1.

For any ring R with 1, the set M,(R) of n X n matrices over R is a ring. It has
identity 1y, (r) = I» iff R has 1.

For any ring R, the set of functions F = {f: R — R} is a ring by defining
(f+g)(r)=1(r)+8&(r),  (fg)(r) =1f(r)eg(r).
The set S = 2Z is a subring of Z but it does not have 1.

S= { {a 0} ta€ ]R} is a subring of R = M>(R). However, note that

0 0
1 0 1 0
1r = |:0 1:| R but lg = |:0 0:| .

If R is a ring and x a variable, then the set
R[x] = {anx" 4+ -+ a1ix+ a0 | ai € R}

is called the polynomial ring over R.

v
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Another example: the quaternions

Recall the (unit) quaternion group:

Q= (i k| i*=j2=K =—1, j=k).

Allowing addition makes them into a ring H, called the quaternions, or Hamiltonians:
H={a+bi+¢ +dk|ab,c,dcR}.

The set H is isomorphic to a subring of M4(RR), the real-valued 4 x 4 matrices:

a —-b —-c -—-d
b a —d c

H= c d a —p|i@bcdeR)C M(R).
d —c b a

Formally, we have an embedding ¢: H < Ms(R) where

SR I A R
(=10 o o -1|> ¢)=|1 o o o, ¢k =0 1 0o o
0 0 1 o0 0 -1 0 0 1 0 0 0

We say that H is represented by a set of matrices.
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Units and zero divisors
Definition
Let R be a ring with 1. A unit is any x € R that has a multiplicative inverse. Let
U(R) be the set (a multiplicative group) of units of R.

An element x € R is a left zero divisor if xy = 0 for some y # 0. (Right zero divisors
are defined analogously.)

v

Examples
1. Let R = Z. The units are U(R) = {—1,1}. There are no (nonzero) zero divisors.

2. Let R = Zio. Then 7 is a unit (and 771 = 3) because 7 -3 = 1. However, 2 is
not a unit.

3. Let R =Z,. A nonzero k € Z, is a unit if gcd(n, k) = 1, and a zero divisor if
ged(n, k) > 2.

4. The ring R = Mx(R) has zero divisors, such as:

L 336

The groups of units of M(IR) are the invertible matrices.

v
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Group rings
Let R be a commutative ring (usually, Z, R, or C) and G a finite (multiplicative)
group. We can define the group ring RG as

RG:={aigi+ -+ angn| ai €R, g € G},
where multiplication is defined in the “obvious” way.
For example, let R =7 and G = Dy = (r,f | r* = f* = rfrf = 1), and consider the
elements x = r + r> — 3f and y= —5¢% + rf in ZD4. Their sum is
X4y =r—4r —3f 4 rf,

and their product is

xy = (r+r*> = 3f)(=5r% 4+ rf) = r(=5r% + rf) + r?(=5r% + rf) — 3f(=5r* 4 rf)

= 53 + r2f —5r* + r3f + 156 — 3frf = —5 — 8r> + 16r%f + r3f.
Remarks
m The (real) Hamiltonians H is not the same ring as RQs.

m If g € G has finite order |g| = k > 1, then RG always has zero divisors:
(l-gl+g+--—-+g)=1-g=1-1=0.

m RG contains a subring isomorphic to R, and the group of units U(RG) contains
a subgroup isomorphic to G.

y
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Types of rings

Definition
If all nonzero elements of R have a multiplicative inverse, then R is a division ring. A
commutative division ring is a field.

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.
(Think: “field without inverses”.)

We haev the following containments:. Moreover:

fields C division rings
fields C integral domains C all rings

Examples
m 7, is a field for p prime.
m Rings that are not integral domains: Z, (composite n), 2Z, M,(R), Z x Z, H.
m Integral domains that are not fields (or even division rings): Z, Z[x], R[x], R[[x]].

m Division ring but not a field: H.
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Cancellation

When doing basic algebra, we often take for granted basic properties such as
cancellation: ax = ay = x = y. However, this need not hold in all rings!

Examples where cancellation fails
m In Zs, note that 2 =2-1=2-4, but 1 # 4.

e, oot [ <[00 <[ 1 3

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and a # 0. If ax = ay for some x,y € R, then x = y.

y

Proof
If ax = ay, then ax — ay = a(x — y) = 0.

Since a # 0 and R has no (nonzero) zero divisors, then x — y = 0. O

v
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Finite integral domains

Lemma
If R is an integral domain and 0 # a € R and k € N, then a* # 0. |

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and 0 # a € R. It suffices to show that a has a
multiplicative inverse.

2 a%,a* ..., which must repeat.

Consider the infinite sequence a, a
Find i > j with a’ = &/, which means that
0=a —d =47 -1).
Since R is an integral domain and & # 0, then &'~/ = 1.
Thus, a-a 771 =1. O
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Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a
normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition
A subring | C R is a left ideal if
rx €1 forall r € R and x € /.

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write | < R.
Examples
m nZ <Z.
m If R = Mx(R), then | = { {i 8} HENCNS R} is a left, but not a right ideal of R.

m The set Sym,(R) of symmetric n x n matrices is a subring of M,(R), but not an
ideal.
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Ideals

Remark

If an ideal | of R contains a unit u, then | = R.

Proof
Suppose u € I, and take an arbitrary r € R.

Then (ru=')u € I, and so r1 = r € I. Therefore, | = R. O

Let's compare the concept of a normal subgroup to that of an ideal:
m normal subgroups are characterized by being invariant under conjugation:
H < G is normal iff ghg™' € Hforallg € G, he H.

m (left) ideals of rings are characterized by being invariant under (left)
multiplication:

I C Ris a (left) ideal iff rie | forall r e R, i €.
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Ideals generated by sets
Definition
The left ideal generated by a set X C R is defined as:
(X):=() {: l'isaleftideal s.t. X S/ CR}.
This is the smallest left ideal containing X.

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup (X) generated by a subset X C G:

m “Bottom up’: As the set of all finite products of elements in X;

m “Top down”: As the intersection of all subgroups containing X.

Proposition

Let R be a ring with unity. The (left, right, two-sided) ideal generated by X C R is:
m Left: {nxx+---+rx.:n€EN, rneR, xe€X},
m Right: {xin+---+xarm:n€N, rn € R, xi € X},
m Two-sided: {rixisi + -+ rnxas, : n €N, ri,s; € R, x; € X}.
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Ideals and quotients
Since an ideal / of R is an additive subgroup (and hence normal), then:

m R/l ={x+1|x € R} is the set of cosets of / in R;
m R/l is a quotient group; with the binary operation (addition) defined as
x+H+Wy+H=x+y+I.

It turns out that if / is also a two-sided ideal, then we can make R// into a ring.

Proposition

If | C R is a (two-sided) ideal, then R/l is a ring (called a quotient ring), where
multiplication is defined by

(x+NDy+1)=xy+1.

Proof

We need to show this is well-defined. Suppose x +/ =r+/and y +/ =s+ 1. This
means that x —r €/ and y —s € /.

It suffices to show that xy + | = rs + I, or equivalently, xy — rs € I:

xy—rs=xy—ry+ry—rs=(x—r)y+r(y—s)el.

v

M. Macauley (Clemson) Section 2.1: Rings and ideals Math 8510, Abstract Algebra | 13 /27



mailto:macaule@clemson.edu

Finite fields

Recall that Z, is a field if p is prime, and that finite integral domains are fields. But
what do these “other” finite fields look like?

Let R = Z»[x] be the polynomial ring over the field Z,.

The polynomial f(x) = x* + x + 1 is irreducible over Z, because it does not have a
root. (Note that f(0) = (1) =1#0.)

Consider the ideal | = (x> + x+ 1) = {(x* + x + 1) - f(x) | f € Z2[x]}.

In the quotient ring R/I, we have the relation x> +x+1=0,or equivalently,
x2:—x—1:x+1.

The quotient has only 4 elements:
0+1, 1+1, x+1, (x+1)+1.

As with the quotient group (or ring) Z/nZ, we usually drop the “I", and just write
R/l = Zox]/(x* + x+ 1) = {0, 1, x, x+ 1}.

It is easy to check that this is a field.
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Finite fields
Here is a Cayley diagram, and the operation tables for R/l = Z[x]/(x* 4+ x 4+ 1):

+ [ [
: 2] < 1 [l
A}
1
1
1
: 2]

There exists a finite field I, of order g, which is unique up to isomorphism, iff g = p
for some prime p. If n > 1, then this field is isomorphic to the quotient ring

Zp[x]/(F) ,

where f is any irreducible polynomial of degree n.

Theorem

n

Much of the error correcting techniques in coding theory are built using mathematics
over Fps = Fas6. This is what allows your CD to play despite scratches.

M. Macauley (Clemson) Section 2.1: Rings and ideals Math 8510, Abstract Algebra | 15 /27


mailto:macaule@clemson.edu

Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory
m The quotient group G/N exists iff N is a normal subgroup.
m A homomorphism is a structure-preserving map: f(x * y) = f(x) * f(y).
m The kernel of a homomorphism is a normal subgroup: Ker¢ < G.

m For every normal subgroup N < G, there is a natural quotient homomorphism
¢: G— G/N, ¢(g)=gN.

m There are four standard isomorphism theorems for groups.

Ring theory
m The quotient ring R/ exists iff | is a two-sided ideal.
m A homomorphism is a structure-preserving map: f(x + y) = f(x) + f(y) and
) = F()F(y)-
m The kernel of a homomorphism is a two-sided ideal: Ker¢ < R.

m For every two-sided ideal | < R, there is a natural quotient homomorphism
¢: R—= R/, ¢(r)=r+1.
m There are four standard isomorphism theorems for rings.

v
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Ring homomorphisms
Definition

A ring homomorphism is a function f: R — S satisfying
f(x+y)="~f(x)+f(y) and f(xy) = f(x)f(y) forall x,y € R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f: R — S is the set Kerf := {x € R: f(x) = 0}.

Examples

1. The function ¢: Z — Z, that sends k — k (mod n) is a ring homomorphism
with Ker(¢) = nZ.

2. For a fixed real number o € R, the “evaluation function”
¢: R[x] — R, ¢: p(x) — p(a)

is a homomorphism. The kernel consists of all polynomials that have « as a root.

3. The following is a homomorphism, for the ideal | = (x* + x + 1) in Z[x]:

¢ ZLo[x] — Z2[x]/1, f(x) — f(x)+1.

4
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The isomorphism theorems for rings

Fundamental homomorphism theorem
If : R — S is a ring homomorphism, then Ker ¢ is an ideal and Im(¢) = R/ Ker(gf)).J
R ¢
Simg¢ <
(I = Ker ¢) any homomorphism 2\Imo < s
\\\ /‘l_1
\\\q g///
quotient +” remaining isomorphism
process AN e (“relabeling™)
:J ’

R/ Ker ¢

quotient
ring

Proof (exercise)

The statement holds for the underlying additive group R. Thus, it remains to show
that Ker ¢ is a (two-sided) ideal, and the following map is a ring homomorphism:

g: R/l — Imao, gx+1)=¢(x).
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The second isomorphism theorem for rings

Suppose S is a subring and / an ideal of R. Then

(i) Thesum S+ /1 ={s+i|s€S, i€l}isasubring of R
and the intersection SN/ is an ideal of S.

+ — =

(ii) The following quotient rings are isomorphic: s

(S+1/1=5/5n1).

o/ N

D

Proof (sketch)

S + I is an additive subgroup, and it's closed under multiplication because

si,2€S, h,hel — (51+i1)(52+i2)= 5150 +Ss1h+ hs + i €S+ 1.
NN
€S el

Showing SN/ is an ideal of S is straightforward (exercise).

We already know that (S+/)// = S/(S N 1) as additive groups.

One explicit isomorphism is ¢: s+ (SN /) — s+ I. It is easy to check that ¢: 1 +— 1

and ¢ preserves products.

O

y
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The third isomorphism theorem for rings

Freshman theorem
Suppose R is a ring with ideals J C /. Then //J is an ideal of R/J and

(R/D)/(1)) = R/I.

J - J

R I J RIJ 1)) B/)) LR
(/) 1

L
sala
aii

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

M. Macauley (Clemson) Section 2.1: Rings and ideals Math 8510, Abstract Algebra |

20 / 27


mailto:macaule@clemson.edu

The fourth isomorphism theorem for rings

Correspondence theorem

Let / be an ideal of R. There is a bijective correspondence between subrings (&
ideals) of R/l and subrings (& ideals) of R that contain /. In particular, every ideal
of R/l has the form J/I, for some ideal J satisfying | C J C R.

D &) (B @ G CEId
P“ }“
oé’e ¢ @ D G G
D,
subrings & ideals that contain / subrings & ideals of R/I
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Maximal ideals
Definition
An ideal | of R is maximal if | # R and if | C J C R holds for some ideal J, then
J=1orJ=R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples
1. If n# 0, then the ideal M = (n) of R = Z is maximal if and only if n is prime.

2. Let R = Q[x] be the set of all polynomials over Q. The ideal M = (x)
consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring Q[x]/(x) have the form f(x) + M = ap + M.

3. Let R = Z»[x], the polynomials over Z,. The ideal M = (x* 4+ x + 1) is
maximal, and R/M = Fy, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.
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Maximal ideals
Theorem
Let R be a commutative ring with 1. The following are equivalent for an ideal / C R.
(i) I is a maximal ideal;
(i) R/I is simple;
(iii) R/I'is a field.

Proof

The equivalence (i)<(ii) is immediate from the Correspondence Theorem.
For (ii)<(iii), we'll show that an arbitrary ring R is simple iff R is a field.

“=": Assume R is simple. Then (a) = R for any nonzero a € R.

Thus, 1 € (a), so 1 = ba for some b € R, so a € U(R) and R is a field. v/
“<": Let I C R be a nonzero ideal of a field R. Take any nonzero a € /.

Then a~tael, and so 1 € I, which means | = R. v/ O

v
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Prime ideals
Definition

Let R be commutative. An ideal P C R is prime if ab € P implies either a € P or
beP.

Note that p € N is a prime number iff p = ab implies either a = p or b = p.

Examples
1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In the polynomial ring Z[x], the ideal | = (2, x) is prime. It consists of all
polynomials whose constant coefficient is even.

Theorem
An ideal P C R is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is
immediate:

Corollary J

In a commutative ring, every maximal ideal is prime.
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Partially ordered sets

Definition

A partial ordering (poset) on a set P is a binary relation that is
(i) Reflexive: a < a,

(i) Antisymmetric: a< band b< a = a= b,

(iii) Transitive: a< b<c = a<ec.

Examples
1. Let P = N with the standard ordering, <.
2. P =N where d < niff d | n. [Note: This is not a poset if P = Z.]
3. Let P C 2°, with relation C.
4. Any acyclic directed graph describes a poset.

Definition
A linear ordering on C is a partial ordering in which any two elements are
compariable, i.e., a< bor b < a.
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Zorn's lemma and the axiom of choice

Definition
1. A chain in a poset P is a nonempty subset C C P that is linearly ordered.

2. An upper bound for a chain C is an element b € P such that a < b for all a € C.
[Note: b need not be in C.]

3. A maximal element in C is an element m € C such that if a € C and m < a, then
a=m.

y

Theorem
The following are equivalent:

1. Axiom of choice: Every collection X = {S;}ic; of nonempty sets has a choice
function, f = (f)ies.

2. Zorn's lemma: If P is a nonempty poset in which every chain has an upper
bound, then P has a maximal element.

3. Well-ordering principle: Every nonempty set can be well-ordered.
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Consequences of the axiom of choice

The cartesian product of nonempty sets is nonempty.
Every ideal in R is contained in a maximal ideal.
Every vector space has a basis.

The product of compact spaces is compact.

A

Every connected graph has a spanning tree.

Proposition

If R is a ring with 1, then every ideal | # R is contained in a maximal ideal M £ R.

4

Proof
Let P={J < R|I!CJC R}, ordered by inclusion.

Every chain C has a maximal element, L¢c = U J, and hence an upper bound.

Jec
By Zorn’s lemma, there is some maximal element M in P, which is a maximal ideal.
v
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