Section 2.1: Rings and ideals

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

What is a ring?

Definition

A ring is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$
x(y+z)=x y+x z \quad \text { and } \quad(y+z) x=y x+z x \quad \forall x, y, z \in R
$$

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $x y \neq y x$).

A few more terms
If $x y=y x$ for all $x, y \in R$, then R is commutative.
If R has a multiplicative identity $1=1_{R} \neq 0$, we say that " R has identity" or "unity", or " R is a ring with 1. ."

A subring of R is a subset $S \subseteq R$ that is also a ring.

What is a ring?

Examples

1. $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ are all commutative rings with 1 .
2. \mathbb{Z}_{n} is a commutative ring with 1 .
3. For any ring R with 1 , the set $M_{n}(R)$ of $n \times n$ matrices over R is a ring. It has identity $1_{M_{n}(R)}=I_{n}$ iff R has 1 .
4. For any ring R, the set of functions $F=\{f: R \rightarrow R\}$ is a ring by defining

$$
(f+g)(r)=f(r)+g(r), \quad(f g)(r)=f(r) g(r)
$$

5. The set $S=2 \mathbb{Z}$ is a subring of \mathbb{Z} but it does not have 1 .
6. $S=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]: a \in \mathbb{R}\right\}$ is a subring of $R=M_{2}(\mathbb{R})$. However, note that

$$
1_{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \text { but } \quad 1_{S}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

7. If R is a ring and x a variable, then the set

$$
R[x]=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \mid a_{i} \in R\right\}
$$

is called the polynomial ring over R.

Another example: the quaternions
Recall the (unit) quaternion group:
$Q_{8}=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=-1, i j=k\right\rangle$.

Allowing addition makes them into a ring \mathbb{H}, called the quaternions, or Hamiltonians:

$$
\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\} .
$$

The set \mathbb{H} is isomorphic to a subring of $M_{4}(\mathbb{R})$, the real-valued 4×4 matrices:

$$
\left.\mathbb{H}=\left\{\begin{array}{cccc}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\} \subseteq M_{4}(\mathbb{R}) .
$$

Formally, we have an embedding $\phi: \mathbb{H} \hookrightarrow M_{4}(\mathbb{R})$ where

$$
\phi(i)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \phi(j)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \phi(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

We say that \mathbb{H} is represented by a set of matrices.

Units and zero divisors

Definition

Let R be a ring with 1. A unit is any $x \in R$ that has a multiplicative inverse. Let $U(R)$ be the set (a multiplicative group) of units of R.

An element $x \in R$ is a left zero divisor if $x y=0$ for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

1. Let $R=\mathbb{Z}$. The units are $U(R)=\{-1,1\}$. There are no (nonzero) zero divisors.
2. Let $R=\mathbb{Z}_{10}$. Then 7 is a unit (and $7^{-1}=3$) because $7 \cdot 3=1$. However, 2 is not a unit.
3. Let $R=\mathbb{Z}_{n}$. A nonzero $k \in \mathbb{Z}_{n}$ is a unit if $\operatorname{gcd}(n, k)=1$, and a zero divisor if $\operatorname{gcd}(n, k) \geq 2$.
4. The ring $R=M_{2}(\mathbb{R})$ has zero divisors, such as:

$$
\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{ll}
6 & 2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The groups of units of $M_{2}(\mathbb{R})$ are the invertible matrices.

Group rings

Let R be a commutative ring (usually, \mathbb{Z}, \mathbb{R}, or \mathbb{C}) and G a finite (multiplicative) group. We can define the group ring $R G$ as

$$
R G:=\left\{a_{1} g_{1}+\cdots+a_{n} g_{n} \mid a_{i} \in R, g_{i} \in G\right\},
$$

where multiplication is defined in the "obvious" way.
For example, let $R=\mathbb{Z}$ and $G=D_{4}=\left\langle r, f \mid r^{4}=f^{2}=r f r f=1\right\rangle$, and consider the elements $x=r+r^{2}-3 f$ and $y=-5 r^{2}+r f$ in $\mathbb{Z} D_{4}$. Their sum is

$$
x+y=r-4 r^{2}-3 f+r f,
$$

and their product is

$$
\begin{aligned}
x y & =\left(r+r^{2}-3 f\right)\left(-5 r^{2}+r f\right)=r\left(-5 r^{2}+r f\right)+r^{2}\left(-5 r^{2}+r f\right)-3 f\left(-5 r^{2}+r f\right) \\
& =-5 r^{3}+r^{2} f-5 r^{4}+r^{3} f+15 f r^{2}-3 f r f=-5-8 r^{3}+16 r^{2} f+r^{3} f .
\end{aligned}
$$

Remarks

- The (real) Hamiltonians \mathbb{H} is not the same ring as $\mathbb{R} Q_{8}$.
- If $g \in G$ has finite order $|g|=k>1$, then $R G$ always has zero divisors:

$$
(1-g)\left(1+g+\cdots+g^{k-1}\right)=1-g^{k}=1-1=0 .
$$

- $R G$ contains a subring isomorphic to R, and the group of units $U(R G)$ contains a subgroup isomorphic to G.

Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. A commutative division ring is a field.

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: "field without inverses".)

We haev the following containments:. Moreover:

$$
\text { fields } \subsetneq \text { division rings }
$$

fields \subsetneq integral domains \subsetneq all rings

Examples

- \mathbb{Z}_{p} is a field for p prime.
$■$ Rings that are not integral domains: \mathbb{Z}_{n} (composite n), $2 \mathbb{Z}, M_{n}(\mathbb{R}), \mathbb{Z} \times \mathbb{Z}, \mathbb{H}$.
■ Integral domains that are not fields (or even division rings): $\mathbb{Z}, \mathbb{Z}[x], \mathbb{R}[x], \mathbb{R}[[x]]$.
■ Division ring but not a field: \mathbb{H}.

Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation: $a x=a y \Longrightarrow x=y$. However, this need not hold in all rings!

Examples where cancellation fails

■ In \mathbb{Z}_{6}, note that $2=2 \cdot 1=2 \cdot 4$, but $1 \neq 4$.
$\square \operatorname{In} M_{2}(\mathbb{R})$, note that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}4 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$.

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and $a \neq 0$. If $a x=a y$ for some $x, y \in R$, then $x=y$.

Proof

If $a x=a y$, then $a x-a y=a(x-y)=0$.
Since $a \neq 0$ and R has no (nonzero) zero divisors, then $x-y=0$.

Finite integral domains

Lemma

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^{k} \neq 0$.

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and $0 \neq a \in R$. It suffices to show that a has a multiplicative inverse.

Consider the infinite sequence $a, a^{2}, a^{3}, a^{4}, \ldots$, which must repeat.
Find $i>j$ with $a^{i}=a^{j}$, which means that

$$
0=a^{i}-a^{j}=a^{j}\left(a^{i-j}-1\right)
$$

Since R is an integral domain and $a^{j} \neq 0$, then $a^{i-j}=1$.
Thus, $a \cdot a^{i-j-1}=1$.

Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring $I \subseteq R$ is a left ideal if

$$
r x \in I \quad \text { for all } r \in R \text { and } x \in I
$$

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.
We use the term ideal and two-sided ideal synonymously, and write $I \unlhd R$.

Examples

- $n \mathbb{Z} \unlhd \mathbb{Z}$.
- If $R=M_{2}(\mathbb{R})$, then $I=\left\{\left[\begin{array}{ll}a & 0 \\ c & 0\end{array}\right]: a, c \in \mathbb{R}\right\}$ is a left, but not a right ideal of R.
- The set $\operatorname{Sym}_{n}(\mathbb{R})$ of symmetric $n \times n$ matrices is a subring of $M_{n}(\mathbb{R})$, but not an ideal.

Ideals

Remark

If an ideal I of R contains a unit u, then $I=R$.

Proof

Suppose $u \in I$, and take an arbitrary $r \in R$.
Then $\left(r u^{-1}\right) u \in I$, and so $r 1=r \in I$. Therefore, $I=R$.

Let's compare the concept of a normal subgroup to that of an ideal:
■ normal subgroups are characterized by being invariant under conjugation:

$$
H \leq G \text { is normal iff } \mathrm{ghg}^{-1} \in H \text { for all } g \in G, h \in H .
$$

■ (left) ideals of rings are characterized by being invariant under (left) multiplication:

$$
I \subseteq R \text { is a (left) ideal iff } r i \in I \text { for all } r \in R, i \in I
$$

Ideals generated by sets

Definition

The left ideal generated by a set $X \subset R$ is defined as:

$$
\langle X\rangle:=\bigcap\{I: I \text { is a left ideal s.t. } X \subseteq I \subseteq R\}
$$

This is the smallest left ideal containing X.
There are analogous definitions by replacing "left" with "right" or "two-sided".

Recall the two ways to define the subgroup $\langle X\rangle$ generated by a subset $X \subseteq G$:
■ "Bottom up": As the set of all finite products of elements in X;
■ "Top down" : As the intersection of all subgroups containing X.

Proposition

Let R be a ring with unity. The (left, right, two-sided) ideal generated by $X \subseteq R$ is:
■ Left: $\left\{r_{1} x_{1}+\cdots+r_{n} x_{n}: n \in \mathbb{N}, r_{i} \in R, x_{i} \in X\right\}$,
■ Right: $\left\{x_{1} r_{1}+\cdots+x_{n} r_{n}: n \in \mathbb{N}, r_{i} \in R, x_{i} \in X\right\}$,
■ Two-sided: $\left\{r_{1} x_{1} s_{1}+\cdots+r_{n} x_{n} s_{n}: n \in \mathbb{N}, r_{i}, s_{i} \in R, x_{i} \in X\right\}$.

Ideals and quotients

Since an ideal I of R is an additive subgroup (and hence normal), then:
$\square R / I=\{x+I \mid x \in R\}$ is the set of cosets of I in R;

- R / I is a quotient group; with the binary operation (addition) defined as

$$
(x+I)+(y+I):=x+y+I
$$

It turns out that if I is also a two-sided ideal, then we can make R / I into a ring.

Proposition

If $I \subseteq R$ is a (two-sided) ideal, then R / I is a ring (called a quotient ring), where multiplication is defined by

$$
(x+I)(y+I):=x y+I
$$

Proof

We need to show this is well-defined. Suppose $x+I=r+I$ and $y+I=s+I$. This means that $x-r \in I$ and $y-s \in I$.

It suffices to show that $x y+I=r s+I$, or equivalently, $x y-r s \in I$:

$$
x y-r s=x y-r y+r y-r s=(x-r) y+r(y-s) \in I
$$

Finite fields

Recall that \mathbb{Z}_{p} is a field if p is prime, and that finite integral domains are fields. But what do these "other" finite fields look like?

Let $R=\mathbb{Z}_{2}[x]$ be the polynomial ring over the field \mathbb{Z}_{2}.
The polynomial $f(x)=x^{2}+x+1$ is irreducible over \mathbb{Z}_{2} because it does not have a root. (Note that $f(0)=f(1)=1 \neq 0$.)

Consider the ideal $I=\left\langle x^{2}+x+1\right\rangle=\left\{\left(x^{2}+x+1\right) \cdot f(x) \mid f \in \mathbb{Z}_{2}[x]\right\}$.
In the quotient ring R / I, we have the relation $x^{2}+x+1=0$, or equivalently, $x^{2}=-x-1=x+1$.

The quotient has only 4 elements:

$$
0+I, \quad 1+I, \quad x+I, \quad(x+1)+I
$$

As with the quotient group (or ring) $\mathbb{Z} / n \mathbb{Z}$, we usually drop the " l ", and just write

$$
R / I=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle \cong\{0,1, x, x+1\}
$$

It is easy to check that this is a field.

Finite fields

Here is a Cayley diagram, and the operation tables for $R / I=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$:

	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\times	1	x	$x+1$
1	1	x	$x+1$
x	x	$x+1$	1
$x+1$	$x+1$	1	x

Theorem

There exists a finite field \mathbb{F}_{q} of order q, which is unique up to isomorphism, iff $q=p^{n}$ for some prime p. If $n>1$, then this field is isomorphic to the quotient ring

$$
\mathbb{Z}_{p}[x] /\langle f\rangle,
$$

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over $\mathbb{F}_{2^{8}}=\mathbb{F}_{256}$. This is what allows your CD to play despite scratches.

Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

- The quotient group G / N exists iff N is a normal subgroup.
- A homomorphism is a structure-preserving map: $f(x * y)=f(x) * f(y)$.
- The kernel of a homomorphism is a normal subgroup: $\operatorname{Ker} \phi \unlhd G$.
- For every normal subgroup $N \unlhd G$, there is a natural quotient homomorphism $\phi: G \rightarrow G / N, \quad \phi(g)=g N$.
- There are four standard isomorphism theorems for groups.

Ring theory

- The quotient ring R / I exists iff I is a two-sided ideal.
- A homomorphism is a structure-preserving map: $f(x+y)=f(x)+f(y)$ and $f(x y)=f(x) f(y)$.
- The kernel of a homomorphism is a two-sided ideal: $\operatorname{Ker} \phi \unlhd R$.

■ For every two-sided ideal $I \unlhd R$, there is a natural quotient homomorphism $\phi: R \rightarrow R / I, \phi(r)=r+I$.

- There are four standard isomorphism theorems for rings.

Ring homomorphisms

Definition

A ring homomorphism is a function $f: R \rightarrow S$ satisfying

$$
f(x+y)=f(x)+f(y) \quad \text { and } \quad f(x y)=f(x) f(y) \quad \text { for all } x, y \in R
$$

A ring isomorphism is a homomorphism that is bijective.
The kernel $f: R \rightarrow S$ is the set $\operatorname{Ker} f:=\{x \in R: f(x)=0\}$.

Examples

1. The function $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ that sends $k \mapsto k(\bmod n)$ is a ring homomorphism with $\operatorname{Ker}(\phi)=n \mathbb{Z}$.
2. For a fixed real number $\alpha \in \mathbb{R}$, the "evaluation function"

$$
\phi: \mathbb{R}[x] \longrightarrow \mathbb{R}, \quad \phi: p(x) \longmapsto p(\alpha)
$$

is a homomorphism. The kernel consists of all polynomials that have α as a root.
3. The following is a homomorphism, for the ideal $I=\left\langle x^{2}+x+1\right\rangle$ in $\mathbb{Z}_{2}[x]$:

$$
\phi: \mathbb{Z}_{2}[x] \longrightarrow \mathbb{Z}_{2}[x] / I, \quad f(x) \longmapsto f(x)+I
$$

The isomorphism theorems for rings

Fundamental homomorphism theorem

If $\phi: R \rightarrow S$ is a ring homomorphism, then $\operatorname{Ker} \phi$ is an ideal and $\operatorname{Im}(\phi) \cong R / \operatorname{Ker}(\phi)$.

Proof (exercise)

The statement holds for the underlying additive group R. Thus, it remains to show that $\operatorname{Ker} \phi$ is a (two-sided) ideal, and the following map is a ring homomorphism:

$$
g: R / I \longrightarrow \operatorname{Im} \phi, \quad \quad g(x+I)=\phi(x)
$$

The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then
(i) The sum $S+I=\{s+i \mid s \in S, i \in I\}$ is a subring of R and the intersection $S \cap I$ is an ideal of S.
(ii) The following quotient rings are isomorphic:

$$
(S+I) / I \cong S /(S \cap I)
$$

Proof (sketch)

$S+I$ is an additive subgroup, and it's closed under multiplication because

$$
s_{1}, s_{2} \in S, i_{1}, i_{2} \in I \quad \Longrightarrow \quad\left(s_{1}+i_{1}\right)\left(s_{2}+i_{2}\right)=\underbrace{s_{1} s_{2}}_{\in S}+\underbrace{s_{1} i_{2}+i_{1} s_{2}+i_{1} i_{2}}_{\in I} \in S+I .
$$

Showing $S \cap I$ is an ideal of S is straightforward (exercise).
We already know that $(S+I) / I \cong S /(S \cap I)$ as additive groups.
One explicit isomorphism is $\phi: s+(S \cap I) \mapsto s+I$. It is easy to check that $\phi: 1 \mapsto 1$ and ϕ preserves products.

The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals $J \subseteq I$. Then I / J is an ideal of R / J and

$$
(R / J) /(I / J) \cong R / I
$$

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (\& ideals) of R / I and subrings (\& ideals) of R that contain I. In particular, every ideal of R / I has the form J / I, for some ideal J satisfying $I \subseteq J \subseteq R$.

subrings \& ideals that contain I

subrings \& ideals of R / I

Maximal ideals

Definition

An ideal I of R is maximal if $I \neq R$ and if $I \subseteq J \subseteq R$ holds for some ideal J, then $J=I$ or $J=R$.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

1. If $n \neq 0$, then the ideal $M=\langle n\rangle$ of $R=\mathbb{Z}$ is maximal if and only if n is prime.
2. Let $R=\mathbb{Q}[x]$ be the set of all polynomials over \mathbb{Q}. The ideal $M=(x)$ consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring $\mathbb{Q}[x] /\langle x\rangle$ have the form $f(x)+M=a_{0}+M$.
3. Let $R=\mathbb{Z}_{2}[x]$, the polynomials over \mathbb{Z}_{2}. The ideal $M=\left\langle x^{2}+x+1\right\rangle$ is maximal, and $R / M \cong \mathbb{F}_{4}$, the (unique) finite field of order 4.

In all three examples above, the quotient R / M is a field.

Maximal ideals

Theorem

Let R be a commutative ring with 1 . The following are equivalent for an ideal $I \subseteq R$.
(i) I is a maximal ideal;
(ii) R / l is simple;
(iii) R / I is a field.

Proof

The equivalence $(\mathrm{i}) \Leftrightarrow(\mathrm{ii})$ is immediate from the Correspondence Theorem.
For (ii) \Leftrightarrow (iii), we'll show that an arbitrary ring R is simple iff R is a field.
$" \Rightarrow$ ": Assume R is simple. Then $\langle a\rangle=R$ for any nonzero $a \in R$.
Thus, $1 \in\langle a\rangle$, so $1=b a$ for some $b \in R$, so $a \in U(R)$ and R is a field. \checkmark
" \Leftarrow ": Let $I \subseteq R$ be a nonzero ideal of a field R. Take any nonzero $a \in I$.
Then $a^{-1} a \in I$, and so $1 \in I$, which means $I=R$. \checkmark

Prime ideals

Definition

Let R be commutative. An ideal $P \subset R$ is prime if $a b \in P$ implies either $a \in P$ or $b \in P$.

Note that $p \in \mathbb{N}$ is a prime number iff $p=a b$ implies either $a=p$ or $b=p$.

Examples

1. The ideal (n) of \mathbb{Z} is a prime ideal iff n is a prime number (possibly $n=0$).
2. In the polynomial ring $\mathbb{Z}[x]$, the ideal $I=\langle 2, x\rangle$ is prime. It consists of all polynomials whose constant coefficient is even.

Theorem

An ideal $P \subseteq R$ is prime iff R / P is an integral domain.
The proof is straightforward (HW). Since fields are integral domains, the following is immediate:

Corollary

In a commutative ring, every maximal ideal is prime.

Partially ordered sets

Definition

A partial ordering (poset) on a set \mathcal{P} is a binary relation that is
(i) Reflexive: $a \leq a$,
(ii) Antisymmetric: $a \leq b$ and $b \leq a \Longrightarrow a=b$,
(iii) Transitive: $a \leq b \leq c \Longrightarrow a \leq c$.

Examples

1. Let $\mathcal{P}=\mathbb{N}$ with the standard ordering, \leq.
2. $\mathcal{P}=\mathbb{N}$ where $d \leq n$ iff $d \mid n$. [Note: This is not a poset if $\mathcal{P}=\mathbb{Z}$.]
3. Let $\mathcal{P} \subseteq 2^{S}$, with relation \subseteq.
4. Any acyclic directed graph describes a poset.

Definition

A linear ordering on \mathcal{C} is a partial ordering in which any two elements are compariable, i.e., $a \leq b$ or $b \leq a$.

Zorn's lemma and the axiom of choice

Definition

1. A chain in a poset \mathcal{P} is a nonempty subset $\mathcal{C} \subseteq \mathcal{P}$ that is linearly ordered.
2. An upper bound for a chain \mathcal{C} is an element $b \in \mathcal{P}$ such that $a \leq b$ for all $a \in \mathcal{C}$. [Note: b need not be in \mathcal{C}.]
3. A maximal element in \mathcal{C} is an element $m \in \mathcal{C}$ such that if $a \in \mathcal{C}$ and $m \leq a$, then $a=m$.

Theorem

The following are equivalent:

1. Axiom of choice: Every collection $X=\left\{S_{i}\right\}_{i \in l}$ of nonempty sets has a choice function, $f=\left(f_{i}\right)_{i \in I}$.
2. Zorn's lemma: If \mathcal{P} is a nonempty poset in which every chain has an upper bound, then \mathcal{P} has a maximal element.
3. Well-ordering principle: Every nonempty set can be well-ordered.

Consequences of the axiom of choice

1. The cartesian product of nonempty sets is nonempty.
2. Every ideal in R is contained in a maximal ideal.
3. Every vector space has a basis.
4. The product of compact spaces is compact.
5. Every connected graph has a spanning tree.

Proposition

If R is a ring with 1 , then every ideal $I \neq R$ is contained in a maximal ideal $M \not \leq R$.

Proof

Let $\mathcal{P}=\{J \leq R \mid I \subseteq J \subsetneq R\}$, ordered by inclusion.
Every chain \mathcal{C} has a maximal element, $L_{\mathcal{C}}=\bigcup_{J \in \mathcal{C}} J$, and hence an upper bound.
By Zorn's lemma, there is some maximal element M in \mathcal{P}, which is a maximal ideal.

