2. Fraction Fields and localizations
Thoughat, assume R is a commutative ring with 1.
Motiviting example: Z is an integral domain. The field Q is the "smillest"
ring containing it where every element has an inverse.
Question: Is there always such a minimal field that has this poperty?
Def: A field of fractions for R is a field
$$R \xrightarrow{\Phi} F_{R}$$

 F_{R} with a monomorphism $\Phi: R \xrightarrow{\Phi} F_{R}$ s.t. if
 $\theta: R \xrightarrow{K}$ is a monomorphism $\Phi: F_{R} \xrightarrow{K}$ s.t. $\theta = f\Phi$.
Prop: If $R \neq 0$ has a field of fractions F_{R} , then it is unique up
to isomorphism.
Pf: Exercise (stanlard uniqueness proof).
Thm: If $R \neq 0$ is on integral domain, then it has a field of
fractions.
 $Pf: Let X = R \times (R \setminus \{0\})$.
Define an equiv. relation $(a, b) \sim (c, d)$ if $ad = bc$.
[Motivation: $\frac{a}{b} - \frac{c}{d} \Leftrightarrow ad = bc$.]
Check: Equivalence relation (refluxive, symm, transitive) ~
Let $F_{R} = X/n$ (set of equiv. classes).
Denote the equiv. class containing (a, b) as $9/b$.

E
Define operations on X/~ as follows:

$$a/b + c/d = (ad+bc)/bd$$
, $g/b \cdot c/d = ac/bd$.
Check: Well-defined,
 \cdot Associative.
Thus, f_{R} is a commutative ring.
 $1 = a/a$ for any $a \neq 0$.
 $0 = 0/b$ for any $b \neq 0$.
 $IF a/b \neq 0$, then $a/b \cdot b/a = 1 \in F_{R}$,
thus F_{R} is a field.
Check universed property:
Define $\phi: R \longrightarrow F_{R}$, $\phi(r) = ra/a$ for any $a \neq 0$.
Easy: ϕ is a numeric phism.
Define $f: F_{R} \longrightarrow K$ by $f(a/b) = \theta(a) \theta(b)^{-1}$.
Check: $\cdot f$ well-defined
 $\cdot f \phi = \theta$
 $\cdot uniqueness: Suppose g: F_{R} \longrightarrow K$ is another momen. set
 $g\phi = f\phi = \theta$.
Thus $g(r/s) = g(ra/a \cdot (Sa/a)^{-1}) = g(ra/a) g(Sa/a)^{-1} = g(\phi(r)) g(\phi(s)^{-1})$
 $= \theta(r) \theta(s) = f(r/s)$.

(HW): A ring is local iff its non-units form an ideal.Prop (HW): If P is a prime ideal of a commutative ring, andS:= R\P, then Rs is local.This is the motivation for the term "localization."