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Overview: why we need to formalize polynomials

We all know “what a polynomial is”, but how do we formalize such an object?

Here is a partial list of potential pitfalls, from things that “should be true that
aren't”, to flawed proof techniques.

Over H, the degree-2 polyomial f(x) = x* + 1 has 6 roots: =i, £j, +k.
What does it means to plug an n X n matrix into a polynomial? For example,

fx,y) = (x+y)? =x*+2xy +y°,
f(AB)=(A+B)’=A"+AB+ BA+ B> # A’ + 2AB + B>

Cayley-Hamilton theorem

Every n X n matrix satisfies its characteristic polynomial, i.e., pa(A) = 0.

Flawed proof
Since pa(A\) = det(A — Al), just plug in A = A:

pa(A) = det(A — Al) = det(A — A) = det0 = 0.

v
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Single variable polynomials

Intuitive informal definition

Let R be a ring. A polynomial in one variable over R is
f(x):a0+a1x+a2x2+~--—|—a,,x", ai € R.

Here, x is a “variable” that can be assigned values from R or a subring S C R.

Let P(R) be the set of sequences over R, where all but finitely many entries are 0.
We write
a=(a) = (a0, a1, a,...), ai € R.

If a, b € P(R), define operations:

a+b:(a,~—|—b,-)

ab = (Z ajb,-_j) = (aobo, agbh1 + albo, aoby + a1b1 + azbo, .. )
j=0

Proposition (exercise)

If R is a ring, then P(R) is a ring. It is commutative iff R is, and it has 1 iff R does,
in which case 1p(g) = (1&,0,0,...).
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Single variable polynomials

Let R be a ring with 1, and set x = (0,1,0,0,...) € P(R).
Note: x> =(0,0,1,0,0,...), x> =(0,0,0,1,0,...) € P(R), etc.
Set x° := 1pr). The map

R — P(R), ar—(a,0,0,...)

is 1-1, so we may identify R with a subring of P(R), with 1g = 1p(g). Now, we may
write
a = (ao, ai, a,...) = a0+ ax + ax’ + asx° + - - -

for each a € P(R).
We call x an indeterminate, and write R[x] = P(R).

Write f(x) for a € R[x], called a polynomial with coefficients in R. If a, # 0 but
am = 0 for all m > n, say f(x) has degree n, and leading coefficient a,.

If f(x) has leading coefficient 1, it is monic. The zero polynomial 0 := (0,0, ...) has
degree —oo. Polynomials of non-positive degree are constants.
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Single variable polynomials

Proposition

Let R be a ring with 1, and f, g € R[x]. Then
1. deg(f(x) + g(x)) < max{deg f(x),degg(x)}, and
2. deg(f(x)g(x)) < deg f(x) + deg g(x).

Moreover, equality holds in (b) if R has no zero divisors.

Corollary 1
If R has no zero divisors, then f(x) € R[x] is a unit iff f(x) = r with r € U(R).

Corollary 2

R[x] is an integral domain iff R is an integral domain.
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Theorem (division algorithm)

Suppose R is commutative with 1 and f, g € R[x]. If g(x) has leading coefficient b,
then there exists k > 0 and q(x), r(x) € R[x] such that

bF(x) = q(x)g(x) + r(x),  degr(x) < degg().

If b is not a zero divisor in R, then g(x) and r(x) are unique. If b € U(R), we may
take k = 0.

The polynomials g(x) and r(x) are called the quotient and remainder.

Proof (details done on board)
Non-trival case: deg f(x) = m > degg(x) = n.
Let f(x) = a0+ aix + -+ + amx™, g(x) = bo + -+ + byx", (let a = am, b = by).

n

g(x).
Write b¥~1fi(x) = p(x)g(x) + r(x), and plug into b*f(x) = b*~1 - bf(x). O

We induct on m, with the degree < m polynomial fi(x) := bf(x) — ax™~

v

The division algorithm also holds when R is not commutative, as long as b is a unit.
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Substitution
Henceforth, R and S are assumed to be commutative with 1.

Theorem

Suppose 6: R — S is a homomorphism with (1g) = 1s and a € S. Then there
exists a unique evaluation map E,: R[x] — S such that

(i) Ea(r) =6(r), for all r € R,
(i) Ea(x) = a.

Though 6 need not be 1-1, it is usually the canonical inclusion. In this case,
E(f(x))=r+na+--+ra",

which we call f(a). The image of E, is R[a] = {f(a) | f(x) € R[x]}.

Remainder theorem

Suppose R is commutative with unity, f(x) € R[x], and a € R. Then the remainder
of f(x) divided by g(x) =x —ais r = f(a).

Proof
Write f(x) = gq(x)(x — a) + r, and substitute a for x. O

o’
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Algebraic and transcendental elements

Corollary: Factor theorem

Suppose R is commutative with unity, f(x) € R[x], a € R, and f(a) =0. Then x — a
is a factor of f(x), i.e., f(x) = q(x)(x — a) for some q(x) € R[x].

Note that this fails if:

m R is not commutative: recall f(x) = x* 4+ 1 in H[x].
m R does not have 1: consider 2x* + 4x + 2 in 2Z[x].

Definition

If R C S with 1g = 15 , then a € S is algebraic over R if f(a) = 0 for some nonzero
f(x) € R[x], and transcendental otherwise.

Remark

a € S is algebraic over R iff E, is not 1-1.
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Polynomials in several indeterminates
Let / ={0,1,2,3,...,}and I" =1 x --- x | (n copies).
Informally, think of element of /" as “exponent vectors” of monomials, e.g.,
(0,3, 4) corresponds to x{x3x3 .

Write 0 for (0,...,0) € I". Addition on I" is defined component-wise.

Over a fixed ring R, polynomials can be encoded as functions
P.(R) ={a: I" = R a(x) = 0 all but finitely many x € /"}
Note that elements in P,(R) specify the coefficients of monomials, e.g.,
a(0,3,4) = —6 corresponds to — 6x X2 X3 .
For example, in Z[x1, X2, X3], the polynomial f(x1,x2,x3) = —6x2x3x5 +12x7 — 9 is

—6 (i, i, 3) = (0,3,4)
12 (i, o, is) = (5,0,0)
-9 (i, i, 3) =(0,0,0)
0 otherwise.

a(i, 2, 3) =
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Polynomials in several indeterminates
Functions in P,(R) are added componentwise, and multiplied as
(ab)(i) := > _{a()b(k) | j, k€ I", j+k=i},  abePuR), i€l
The following is straightforward but tedious.

Proposition
P.(R) is a ring. It is commutative iff R is, and has 1 iff R does. J

Each r € R defines a constant polynomial via a function a, € P,(R), where

a'/n—)R a(’)_ r I:(O,,O)
v ’ 7710 otherwise.

Note that the identity function is 1 := a; € P,(R).
It is easy to check that a, + as = a,+s and a,as = a,s, and so the map
R — Pn(R), r— a,

is 1-1. As such, we may identify r with a, € P,(R) and view R as a subring of P,(R).
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Polynomials in several indeterminates

If R has 1, then let

Define the indeterminates xx € P,(R) as

Xk(i)z{l i:ek

0 otherwise.
Often, if n =2 or 3, we use x = x1, ¥ = x2, Z = x3, etc.

Note that
} 1 i=2e i 1 = me
2 m
X 1) = X 1) =
k() {0 otherwise, () {0 otherwise.

0...x8=xi and (m,0,...,0) = x"x§ - - x2 = x".)

(Secretly: (1,0,...,0) — xix
It is easy to check that xix; = xjx; (i.e., these commute as functions /" — R).

Every a € P,(R) can be written uniquely using functions with one-point support,
which are called monomials.
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Polynomials in several indeterminates
The degree of a = rx{1 cexin s dega=1i1+ -+ ipn.
If ais a sum of monomials, then say deg = max{dega; | 1 <i < m}.

Also, say that deg 0 = —o0, and if all a;'s have the same degree, then a € P,(R) is
homogeneous.

The elements of P,(R) are called polynomials in the n commuting indeterminates

X1y« ey Xn-

We write R[xi,...,xa] for P,(R) and denotes elements by f(xi,...,x,), etc.
Often we write x := (x1,...,Xp) and f(x) := f(x1,...xn).

Proposition

Let R be a ring with 1 and f(x), g(x) € R[x1,...,%a]. Then
(a) deg(f(x)+ g(x)) < max{deg f(x),degg(x)},

(b) deg(f(x)g(x)) < deg f(x) - deg g(x).

Moreover, equality holds in (b) if R has no zero divisors.
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Substitution for multivariable polynomials

Theorem
Suppose 6: R — S is a homomorphism with 6(1g) = 1s and a = (a1,...,a,) € S".
Then there exists a unique evaluation map E;: R[x] — S such that

(i) Ea(r) =0(r), forall r e R,

(i) Ea(x;) =aj, foralli=1,...,n.

Proof (sketch)

Define E(rx - xin) = @(r)al - - - alr for monomials; extend naturally to polynomials.

4

Remarks
1. If 0 is 1-1, then E, “substitutes” elements from S in place of the x;'s, by

F(x1, .. %) —2 F(a,. .., an).

2. This is easily extended to an arbitrary number of variables.

3. We could have defined R[x1,...,x,] abstractly via a universal mapping property.

4. Another construction: Define R[x1, x2] = (R[x1])[x2], etc.
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Substitution for multivariable polynomials

Definition
Elements a1, ..., a, € S are algebraically dependent over R if f(ay,...,a,) =0 for
some nonzero f(x) € R[xi, ..., Xa].

Otherwise, they are algebraically independent over R.

Examples
1. a1 = /3, a» = /5 are algebraically dependent over Z. Consider
f(x,y) = (x* = 3)(y* - 5).
2. a1 = +/m, a2 = 27 + 1 are algebraically dependent over Z. Consider
fx,y) =2x> —y + 1.
3. It is “unknown” whether a; = 7, a» = e are algebraically dependent over Z.

Remarks

1. a € S algebraically independent over R <= a transcendental over R.

2. ai,...,an € S algebraically indep. over R = ay, ..., a, transcendental over R.
v
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Hilbert's basis theorem

If a 0 exponent occurs in a monomial, we suppress writing the indeterminate.
For example, 5x?x3 x3x2 = 5xox2. By doing this, we can consider
R[x1] € R[x1,x] C R[x1,%,x3] C - -
We write
oo
Rlx1, X2, x3,...] = U Rlx1, ..., xk].
i=1
Not surprisingly, this ring has non-finitely generated ideals, e.g., | = (x1, x2,...).
Perhaps surprisingly, this is not the case in R[xi, ..., X].

Hilbert's basis theorem J

Every ideal in R[xi,...,xn] is finitely generated.

We will prove this in the next section. (It's more natural to do on the board.)
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