Section 2.3: Polynomial Rings

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

Overview: why we need to formalize polynomials
We all know "what a polynomial is", but how do we formalize such an object?
Here is a partial list of potential pitfalls, from things that "should be true that aren't', to flawed proof techniques.

Over \mathbb{H}, the degree- 2 polyomial $f(x)=x^{2}+1$ has 6 roots: $\pm i, \pm j, \pm k$.
What does it means to plug an $n \times n$ matrix into a polynomial? For example,

$$
\begin{aligned}
f(x, y) & =(x+y)^{2}=x^{2}+2 x y+y^{2}, \\
f(A, B) & =(A+B)^{2}=A^{2}+A B+B A+B^{2} \neq A^{2}+2 A B+B^{2} .
\end{aligned}
$$

Cayley-Hamilton theorem

Every $n \times n$ matrix satisfies its characteristic polynomial, i.e., $p_{A}(A)=0$.

Flawed proof

Since $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)$, just plug in $\lambda=A$:

$$
p_{A}(A)=\operatorname{det}(A-A I)=\operatorname{det}(A-A)=\operatorname{det} 0=0 .
$$

Single variable polynomials

Intuitive informal definition

Let R be a ring. A polynomial in one variable over R is

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, \quad a_{i} \in R
$$

Here, x is a "variable" that can be assigned values from R or a subring $S \subset R$.

Let $P(R)$ be the set of sequences over R, where all but finitely many entries are 0 . We write

$$
a=\left(a_{i}\right)=\left(a_{0}, a_{1}, a_{2}, \ldots\right), \quad a_{i} \in R
$$

If $a, b \in P(R)$, define operations:

$$
\begin{aligned}
a+b & =\left(a_{i}+b_{i}\right) \\
a b & =\left(\sum_{j=0}^{i} a_{j} b_{i-j}\right)=\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, \ldots\right)
\end{aligned}
$$

Proposition (exercise)

If R is a ring, then $P(R)$ is a ring. It is commutative iff R is, and it has 1 iff R does, in which case $1_{P(R)}=\left(1_{R}, 0,0, \ldots\right)$.

Single variable polynomials

Let R be a ring with 1 , and set $x=(0,1,0,0, \ldots) \in P(R)$.
Note: $x^{2}=(0,0,1,0,0, \ldots), x^{3}=(0,0,0,1,0, \ldots) \in P(R)$, etc.
Set $x^{0}:=1_{P(R)}$. The map

$$
R \longrightarrow P(R), \quad a \longmapsto(a, 0,0, \ldots)
$$

is $1-1$, so we may identify R with a subring of $P(R)$, with $1_{R}=1_{P(R)}$. Now, we may write

$$
a=\left(a_{0}, a_{1}, a_{2}, \ldots\right)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

for each $a \in P(R)$.
We call x an indeterminate, and write $R[x]=P(R)$.
Write $f(x)$ for $a \in R[x]$, called a polynomial with coefficients in R. If $a_{n} \neq 0$ but $a_{m}=0$ for all $m>n$, say $f(x)$ has degree n, and leading coefficient a_{n}.

If $f(x)$ has leading coefficient 1 , it is monic. The zero polynomial $0:=(0,0, \ldots)$ has degree $-\infty$. Polynomials of non-positive degree are constants.

Single variable polynomials

> Proposition
> Let R be a ring with 1 , and $f, g \in R[x]$. Then
> 1. $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x)$, $\operatorname{deg} g(x)\}$, and
> 2. $\operatorname{deg}(f(x) g(x)) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)$.

Moreover, equality holds in (b) if R has no zero divisors.

Corollary 1

If R has no zero divisors, then $f(x) \in R[x]$ is a unit iff $f(x)=r$ with $r \in U(R)$.

Corollary 2

$R[x]$ is an integral domain iff R is an integral domain.

Theorem (division algorithm)

Suppose R is commutative with 1 and $f, g \in R[x]$. If $g(x)$ has leading coefficient b, then there exists $k \geq 0$ and $q(x), r(x) \in R[x]$ such that

$$
b^{k} f(x)=q(x) g(x)+r(x), \quad \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

If b is not a zero divisor in R, then $q(x)$ and $r(x)$ are unique. If $b \in U(R)$, we may take $k=0$.

The polynomials $q(x)$ and $r(x)$ are called the quotient and remainder.

Proof (details done on board)

Non-trival case: $\operatorname{deg} f(x)=m \geq \operatorname{deg} g(x)=n$.
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+\cdots+b_{n} x^{n}$, (let $a=a_{m}, b=b_{n}$).
We induct on m, with the degree $<m$ polynomial $f_{1}(x):=b f(x)-a x^{m-n} g(x)$.
Write $b^{k-1} f_{1}(x)=p(x) g(x)+r(x)$, and plug into $b^{k} f(x)=b^{k-1} \cdot b f(x)$.

The division algorithm also holds when R is not commutative, as long as b is a unit.

Substitution

Henceforth, R and S are assumed to be commutative with 1.

Theorem

Suppose $\theta: R \rightarrow S$ is a homomorphism with $\theta\left(1_{R}\right)=1_{S}$ and $a \in S$. Then there exists a unique evaluation map $E_{a}: R[x] \rightarrow S$ such that
(i) $E_{a}(r)=\theta(r)$, for all $r \in R$,
(ii) $E_{a}(x)=a$.

Though θ need not be $1-1$, it is usually the canonical inclusion. In this case,

$$
E_{a}(f(x))=r_{0}+r_{1} a+\cdots+r_{n} a^{n},
$$

which we call $f(a)$. The image of E_{a} is $R[a]=\{f(a) \mid f(x) \in R[x]\}$.

Remainder theorem

Suppose R is commutative with unity, $f(x) \in R[x]$, and $a \in R$. Then the remainder of $f(x)$ divided by $g(x)=x-a$ is $r=f(a)$.

Proof

Write $f(x)=q(x)(x-a)+r$, and substitute a for x.

Algebraic and transcendental elements

Corollary: Factor theorem

Suppose R is commutative with unity, $f(x) \in R[x]$, $a \in R$, and $f(a)=0$. Then $x-a$ is a factor of $f(x)$, i.e., $f(x)=q(x)(x-a)$ for some $q(x) \in R[x]$.

Note that this fails if:

- R is not commutative: recall $f(x)=x^{2}+1$ in $\mathbb{H}[x]$.
- R does not have 1 : consider $2 x^{2}+4 x+2$ in $2 \mathbb{Z}[x]$.

Definition

If $R \subseteq S$ with $1_{R}=1_{S}$, then $a \in S$ is algebraic over R if $f(a)=0$ for some nonzero $f(x) \in R[x]$, and transcendental otherwise.

Remark

$a \in S$ is algebraic over R iff E_{a} is not $1-1$.

Polynomials in several indeterminates

Let $I=\{0,1,2,3, \ldots$,$\} and I^{n}=I \times \cdots \times I$ (n copies).
Informally, think of element of I^{n} as "exponent vectors" of monomials, e.g.,

$$
(0,3,4) \text { corresponds to } x_{1}^{0} x_{2}^{3} x_{3}^{4}
$$

Write 0 for $(0, \ldots, 0) \in I^{n}$. Addition on I^{n} is defined component-wise.
Over a fixed ring R, polynomials can be encoded as functions

$$
P_{n}(R)=\left\{a: I^{n} \rightarrow R \mid a(x)=0 \text { all but finitely many } x \in I^{n}\right\}
$$

Note that elements in $P_{n}(R)$ specify the coefficients of monomials, e.g.,

$$
a(0,3,4)=-6 \quad \text { corresponds to }-6 x_{1}^{0} x_{2}^{3} x_{3}^{4} .
$$

For example, in $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$, the polynomial $f\left(x_{1}, x_{2}, x_{3}\right)=-6 x_{1}^{0} x_{2}^{3} x_{3}^{4}+12 x_{1}^{5}-9$ is

$$
a\left(i_{1}, i_{2}, i_{3}\right)= \begin{cases}-6 & \left(i_{1}, i_{2}, i_{3}\right)=(0,3,4) \\ 12 & \left(i_{1}, i_{2}, i_{3}\right)=(5,0,0) \\ -9 & \left(i_{1}, i_{2}, i_{3}\right)=(0,0,0) \\ 0 & \text { otherwise }\end{cases}
$$

Polynomials in several indeterminates

Functions in $P_{n}(R)$ are added componentwise, and multiplied as

$$
(a b)(i):=\sum\left\{a(j) b(k) \mid j, k \in I^{n}, j+k=i\right\}, \quad a, b \in P_{n}(R), \quad i \in I^{n} .
$$

The following is straightforward but tedious.

Proposition

$P_{n}(R)$ is a ring. It is commutative iff R is, and has 1 iff R does.

Each $r \in R$ defines a constant polynomial via a function $a_{r} \in P_{n}(R)$, where

$$
a_{1}: I^{n} \longrightarrow R, \quad a_{r}(i)= \begin{cases}r & i=(0, \ldots, 0) \\ 0 & \text { otherwise }\end{cases}
$$

Note that the identity function is $1:=a_{1} \in P_{n}(R)$.
It is easy to check that $a_{r}+a_{s}=a_{r+s}$ and $a_{r} a_{s}=a_{r s}$, and so the map

$$
R \longrightarrow P_{n}(R), \quad r \longmapsto a_{r}
$$

is $1-1$. As such, we may identify r with $a_{r} \in P_{n}(R)$ and view R as a subring of $P_{n}(R)$.

Polynomials in several indeterminates

If R has 1 , then let

$$
e_{k}:=(0,0, \ldots, 0, \underbrace{1}_{\text {pos. } i}, 0, \ldots, 0) \in I^{n}
$$

Define the indeterminates $x_{k} \in P_{n}(R)$ as

$$
x_{k}(i)= \begin{cases}1 & i=e_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Often, if $n=2$ or 3 , we use $x=x_{1}, y=x_{2}, z=x_{3}$, etc.
Note that

$$
x_{k}^{2}(i)=\left\{\begin{array}{ll}
1 & i=2 e_{k} \\
0 & \text { otherwise },
\end{array} \quad x_{k}^{m}(i)= \begin{cases}1 & i=m e_{k} \\
0 & \text { otherwise }\end{cases}\right.
$$

(Secretly: $(1,0, \ldots, 0) \mapsto x_{1}^{1} x_{2}^{0} \cdots x_{n}^{0}=x_{1}$ and $(m, 0, \ldots, 0) \mapsto x_{1}^{m} x_{2}^{0} \cdots x_{n}^{0}=x_{1}^{m}$.)
It is easy to check that $x_{i} x_{j}=x_{j} x_{i}$ (i.e., these commute as functions $I^{n} \rightarrow R$).
Every $a \in P_{n}(R)$ can be written uniquely using functions with one-point support, which are called monomials.

Polynomials in several indeterminates

The degree of $a=r x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ is $\operatorname{deg} a=i_{1}+\cdots+i_{n}$.
If a is a sum of monomials, then say $\operatorname{deg}=\max \left\{\operatorname{deg} a_{i} \mid 1 \leq i \leq m\right\}$.
Also, say that $\operatorname{deg} 0=-\infty$, and if all a_{i} 's have the same degree, then $a \in P_{n}(R)$ is homogeneous.

The elements of $P_{n}(R)$ are called polynomials in the n commuting indeterminates x_{1}, \ldots, x_{n}.

We write $R\left[x_{1}, \ldots, x_{n}\right]$ for $P_{n}(R)$ and denotes elements by $f\left(x_{1}, \ldots, x_{n}\right)$, etc.
Often we write $x:=\left(x_{1}, \ldots, x_{n}\right)$ and $f(x):=f\left(x_{1}, \ldots x_{n}\right)$.

Proposition

Let R be a ring with 1 and $f(x), g(x) \in R\left[x_{1}, \ldots, x_{n}\right]$. Then
(a) $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}$,
(b) $\operatorname{deg}(f(x) g(x)) \leq \operatorname{deg} f(x) \cdot \operatorname{deg} g(x)$.

Moreover, equality holds in (b) if R has no zero divisors.

Substitution for multivariable polynomials

Theorem

Suppose $\theta: R \rightarrow S$ is a homomorphism with $\theta\left(1_{R}\right)=1_{S}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in S^{n}$.
Then there exists a unique evaluation map $E_{a}: R[x] \rightarrow S$ such that
(i) $E_{a}(r)=\theta(r)$, for all $r \in R$,
(ii) $E_{a}\left(x_{i}\right)=a_{i}$, for all $i=1, \ldots, n$.

Proof (sketch)

Define $E\left(r x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)=\theta(r) a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}$ for monomials; extend naturally to polynomials.

Remarks

1. If θ is $1-1$, then E_{a} "substitutes" elements from S in place of the x_{i} 's, by

$$
f\left(x_{1}, \ldots, x_{n}\right) \stackrel{E_{2}}{\longleftrightarrow} f\left(a_{1}, \ldots, a_{n}\right) .
$$

2. This is easily extended to an arbitrary number of variables.
3. We could have defined $R\left[x_{1}, \ldots, x_{n}\right]$ abstractly via a universal mapping property.
4. Another construction: Define $R\left[x_{1}, x_{2}\right]=\left(R\left[x_{1}\right]\right)\left[x_{2}\right]$, etc.

Substitution for multivariable polynomials

Definition

Elements $a_{1}, \ldots, a_{n} \in S$ are algebraically dependent over R if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for some nonzero $f(x) \in R\left[x_{1}, \ldots, x_{n}\right]$.

Otherwise, they are algebraically independent over R.

Examples

1. $a_{1}=\sqrt{3}, a_{2}=\sqrt{5}$ are algebraically dependent over \mathbb{Z}. Consider $f(x, y)=\left(x^{2}-3\right)\left(y^{2}-5\right)$.
2. $a_{1}=\sqrt{\pi}, a_{2}=2 \pi+1$ are algebraically dependent over \mathbb{Z}. Consider $f(x, y)=2 x^{2}-y+1$.
3. It is "unknown" whether $a_{1}=\pi, a_{2}=e$ are algebraically dependent over \mathbb{Z}.

Remarks

1. $a \in S$ algebraically independent over $R \Longleftrightarrow a$ transcendental over R.
2. $a_{1}, \ldots, a_{n} \in S$ algebraically indep. over $R \Longrightarrow a_{1}, \ldots, a_{n}$ transcendental over R.

Hilbert's basis theorem

If a 0 exponent occurs in a monomial, we suppress writing the indeterminate.
For example, $5 x_{1}^{0} x_{2}^{1} x_{3}^{0} x_{4}^{8}=5 x_{2} x_{4}^{8}$. By doing this, we can consider

$$
R\left[x_{1}\right] \subseteq R\left[x_{1}, x_{2}\right] \subseteq R\left[x_{1}, x_{2}, x_{3}\right] \subseteq \cdots
$$

We write

$$
R\left[x_{1}, x_{2}, x_{3}, \ldots\right]=\bigcup_{i=1}^{\infty} R\left[x_{1}, \ldots, x_{k}\right] .
$$

Not surprisingly, this ring has non-finitely generated ideals, e.g., $I=\left(x_{1}, x_{2}, \ldots\right)$.
Perhaps surprisingly, this is not the case in $R\left[x_{1}, \ldots, x_{n}\right]$.

Hilbert's basis theorem

Every ideal in $R\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated.

We will prove this in the next section. (It's more natural to do on the board.)

