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Overview: why we need to formalize polynomials

We all know “what a polynomial is”, but how do we formalize such an object?

Here is a partial list of potential pitfalls, from things that “should be true that
aren’t”, to flawed proof techniques.

Over H, the degree-2 polyomial f (x) = x2 + 1 has 6 roots: ±i ,±j ,±k.

What does it means to plug an n × n matrix into a polynomial? For example,

f (x , y) = (x + y)2 = x2 + 2xy + y 2,

f (A,B) = (A + B)2 = A2 + AB + BA + B2 6= A2 + 2AB + B2.

Cayley-Hamilton theorem

Every n × n matrix satisfies its characteristic polynomial, i.e., pA(A) = 0.

Flawed proof

Since pA(λ) = det(A− λI ), just plug in λ = A:

pA(A) = det(A− AI ) = det(A− A) = det 0 = 0.
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Single variable polynomials

Intuitive informal definition

Let R be a ring. A polynomial in one variable over R is

f (x) = a0 + a1x + a2x
2 + · · ·+ anx

n, ai ∈ R.

Here, x is a “variable” that can be assigned values from R or a subring S ⊂ R.

Let P(R) be the set of sequences over R, where all but finitely many entries are 0.
We write

a = (ai ) = (a0, a1, a2, . . . ), ai ∈ R.

If a, b ∈ P(R), define operations:

a + b = (ai + bi )

ab =
( i∑

j=0

ajbi−j

)
= (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . . )

Proposition (exercise)

If R is a ring, then P(R) is a ring. It is commutative iff R is, and it has 1 iff R does,
in which case 1P(R) = (1R , 0, 0, . . . ).
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Single variable polynomials

Let R be a ring with 1, and set x = (0, 1, 0, 0, . . . ) ∈ P(R).

Note: x2 = (0, 0, 1, 0, 0, . . . ), x3 = (0, 0, 0, 1, 0, . . . ) ∈ P(R), etc.

Set x0 := 1P(R). The map

R −→ P(R), a 7−→ (a, 0, 0, . . . )

is 1–1, so we may identify R with a subring of P(R), with 1R = 1P(R). Now, we may
write

a = (a0, a1, a2, . . . ) = a0 + a1x + a2x
2 + a3x

3 + · · ·

for each a ∈ P(R).

We call x an indeterminate, and write R[x ] = P(R).

Write f (x) for a ∈ R[x ], called a polynomial with coefficients in R. If an 6= 0 but
am = 0 for all m > n, say f (x) has degree n, and leading coefficient an.

If f (x) has leading coefficient 1, it is monic. The zero polynomial 0 := (0, 0, . . . ) has
degree −∞. Polynomials of non-positive degree are constants.
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Single variable polynomials

Proposition

Let R be a ring with 1, and f , g ∈ R[x ]. Then

1. deg(f (x) + g(x)) ≤ max{deg f (x), deg g(x)}, and

2. deg(f (x)g(x)) ≤ deg f (x) + deg g(x).

Moreover, equality holds in (b) if R has no zero divisors.

Corollary 1

If R has no zero divisors, then f (x) ∈ R[x ] is a unit iff f (x) = r with r ∈ U(R).

Corollary 2

R[x ] is an integral domain iff R is an integral domain.
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Theorem (division algorithm)

Suppose R is commutative with 1 and f , g ∈ R[x ]. If g(x) has leading coefficient b,
then there exists k ≥ 0 and q(x), r(x) ∈ R[x ] such that

bk f (x) = q(x)g(x) + r(x), deg r(x) < deg g(x).

If b is not a zero divisor in R, then q(x) and r(x) are unique. If b ∈ U(R), we may
take k = 0.

The polynomials q(x) and r(x) are called the quotient and remainder.

Proof (details done on board)

Non-trival case: deg f (x) = m ≥ deg g(x) = n.

Let f (x) = a0 + a1x + · · ·+ amx
m, g(x) = b0 + · · ·+ bnx

n, (let a = am, b = bn).

We induct on m, with the degree < m polynomial f1(x) := bf (x)− axm−ng(x).

Write bk−1f1(x) = p(x)g(x) + r(x), and plug into bk f (x) = bk−1 · bf (x). �

The division algorithm also holds when R is not commutative, as long as b is a unit.
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Substitution
Henceforth, R and S are assumed to be commutative with 1.

Theorem

Suppose θ : R → S is a homomorphism with θ(1R) = 1S and a ∈ S . Then there
exists a unique evaluation map Ea : R[x ]→ S such that

(i) Ea(r) = θ(r), for all r ∈ R,

(ii) Ea(x) = a.

Though θ need not be 1–1, it is usually the canonical inclusion. In this case,

Ea(f (x)) = r0 + r1a + · · ·+ rna
n,

which we call f (a). The image of Ea is R[a] = {f (a) | f (x) ∈ R[x ]}.

Remainder theorem

Suppose R is commutative with unity, f (x) ∈ R[x ], and a ∈ R. Then the remainder
of f (x) divided by g(x) = x − a is r = f (a).

Proof

Write f (x) = q(x)(x − a) + r , and substitute a for x . �

M. Macauley (Clemson) Section 2.3: Polynomial rings Math 8510, Abstract Algebra I 7 / 15

mailto:macaule@clemson.edu


Algebraic and transcendental elements

Corollary: Factor theorem

Suppose R is commutative with unity, f (x) ∈ R[x ], a ∈ R, and f (a) = 0. Then x − a
is a factor of f (x), i.e., f (x) = q(x)(x − a) for some q(x) ∈ R[x ].

Note that this fails if:

R is not commutative: recall f (x) = x2 + 1 in H[x ].

R does not have 1: consider 2x2 + 4x + 2 in 2Z[x ].

Definition

If R ⊆ S with 1R = 1S , then a ∈ S is algebraic over R if f (a) = 0 for some nonzero
f (x) ∈ R[x ], and transcendental otherwise.

Remark

a ∈ S is algebraic over R iff Ea is not 1–1.
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Polynomials in several indeterminates

Let I = {0, 1, 2, 3, . . . , } and I n = I × · · · × I (n copies).

Informally, think of element of I n as “exponent vectors” of monomials, e.g.,

(0, 3, 4) corresponds to x0
1 x

3
2 x

4
3 .

Write 0 for (0, . . . , 0) ∈ I n. Addition on I n is defined component-wise.

Over a fixed ring R, polynomials can be encoded as functions

Pn(R) = {a : I n → R | a(x) = 0 all but finitely many x ∈ I n}

Note that elements in Pn(R) specify the coefficients of monomials, e.g.,

a(0, 3, 4) = −6 corresponds to − 6x0
1 x

3
2 x

4
3 .

For example, in Z[x1, x2, x3], the polynomial f (x1, x2, x3) = −6x0
1 x

3
2 x

4
3 + 12x5

1 − 9 is

a(i1, i2, i3) =


−6 (i1, i2, i3) = (0, 3, 4)

12 (i1, i2, i3) = (5, 0, 0)

−9 (i1, i2, i3) = (0, 0, 0)

0 otherwise.
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Polynomials in several indeterminates

Functions in Pn(R) are added componentwise, and multiplied as

(ab)(i) :=
∑{

a(j)b(k) | j , k ∈ I n, j + k = i
}
, a, b ∈ Pn(R), i ∈ I n.

The following is straightforward but tedious.

Proposition

Pn(R) is a ring. It is commutative iff R is, and has 1 iff R does.

Each r ∈ R defines a constant polynomial via a function ar ∈ Pn(R), where

a1 : I n −→ R, ar (i) =

{
r i = (0, . . . , 0)

0 otherwise.

Note that the identity function is 1 := a1 ∈ Pn(R).

It is easy to check that ar + as = ar+s and aras = ars , and so the map

R −→ Pn(R), r 7−→ ar

is 1–1. As such, we may identify r with ar ∈ Pn(R) and view R as a subring of Pn(R).
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Polynomials in several indeterminates

If R has 1, then let
ek := (0, 0, . . . , 0, 1︸︷︷︸

pos. i

, 0, . . . , 0) ∈ I n.

Define the indeterminates xk ∈ Pn(R) as

xk(i) =

{
1 i = ek

0 otherwise.

Often, if n = 2 or 3, we use x = x1, y = x2, z = x3, etc.

Note that

x2
k (i) =

{
1 i = 2ek

0 otherwise,
xm
k (i) =

{
1 i = mek

0 otherwise.

(Secretly: (1, 0, . . . , 0) 7→ x1
1 x

0
2 · · · x0

n = x1 and (m, 0, . . . , 0) 7→ xm
1 x0

2 · · · x0
n = xm

1 .)

It is easy to check that xixj = xjxi (i.e., these commute as functions I n → R).

Every a ∈ Pn(R) can be written uniquely using functions with one-point support,
which are called monomials.
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Polynomials in several indeterminates

The degree of a = rx i1
1 · · · x

in
n is deg a = i1 + · · ·+ in.

If a is a sum of monomials, then say deg = max{deg ai | 1 ≤ i ≤ m}.

Also, say that deg 0 = −∞, and if all ai ’s have the same degree, then a ∈ Pn(R) is
homogeneous.

The elements of Pn(R) are called polynomials in the n commuting indeterminates
x1, . . . , xn.

We write R[x1, . . . , xn] for Pn(R) and denotes elements by f (x1, . . . , xn), etc.

Often we write x := (x1, . . . , xn) and f (x) := f (x1, . . . xn).

Proposition

Let R be a ring with 1 and f (x), g(x) ∈ R[x1, . . . , xn]. Then

(a) deg(f (x) + g(x)) ≤ max{deg f (x), deg g(x)},
(b) deg(f (x)g(x)) ≤ deg f (x) · deg g(x).

Moreover, equality holds in (b) if R has no zero divisors.
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Substitution for multivariable polynomials

Theorem

Suppose θ : R → S is a homomorphism with θ(1R) = 1S and a = (a1, . . . , an) ∈ Sn.
Then there exists a unique evaluation map Ea : R[x ]→ S such that

(i) Ea(r) = θ(r), for all r ∈ R,

(ii) Ea(xi ) = ai , for all i = 1, . . . , n.

Proof (sketch)

Define E(rx i1
1 · · · x

in
n ) = θ(r)ai11 · · · a

in
n for monomials; extend naturally to polynomials.

Remarks

1. If θ is 1–1, then Ea “substitutes” elements from S in place of the xi ’s, by

f (x1, . . . , xn)
Ea7−→ f (a1, . . . , an).

2. This is easily extended to an arbitrary number of variables.

3. We could have defined R[x1, . . . , xn] abstractly via a universal mapping property.

4. Another construction: Define R[x1, x2] = (R[x1])[x2], etc.
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Substitution for multivariable polynomials

Definition

Elements a1, . . . , an ∈ S are algebraically dependent over R if f (a1, . . . , an) = 0 for
some nonzero f (x) ∈ R[x1, . . . , xn].

Otherwise, they are algebraically independent over R.

Examples

1. a1 =
√

3, a2 =
√

5 are algebraically dependent over Z. Consider
f (x , y) = (x2 − 3)(y 2 − 5).

2. a1 =
√
π, a2 = 2π + 1 are algebraically dependent over Z. Consider

f (x , y) = 2x2 − y + 1.

3. It is “unknown” whether a1 = π, a2 = e are algebraically dependent over Z.

Remarks

1. a ∈ S algebraically independent over R ⇐⇒ a transcendental over R.

2. a1, . . . , an ∈ S algebraically indep. over R =⇒ a1, . . . , an transcendental over R.
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Hilbert’s basis theorem

If a 0 exponent occurs in a monomial, we suppress writing the indeterminate.

For example, 5x0
1 x

1
2 x

0
3 x

8
4 = 5x2x

8
4 . By doing this, we can consider

R[x1] ⊆ R[x1, x2] ⊆ R[x1, x2, x3] ⊆ · · ·

We write

R[x1, x2, x3, . . . ] =
∞⋃
i=1

R[x1, . . . , xk ].

Not surprisingly, this ring has non-finitely generated ideals, e.g., I = (x1, x2, . . . ).

Perhaps surprisingly, this is not the case in R[x1, . . . , xn].

Hilbert’s basis theorem

Every ideal in R[x1, . . . , xn] is finitely generated.

We will prove this in the next section. (It’s more natural to do on the board.)
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