5. The Chinese Remainder Theorem

Motivating example: LIt's solve the system $\begin{cases}2 x \equiv 5 & (\bmod 7) \\ 3 x \equiv 4 & (\bmod 8)\end{cases}$
$\ln \mathbb{Z}_{7}: 2^{-1}=4$, so $4(2 x \equiv 5) \bmod 7$

$$
\begin{aligned}
& \Rightarrow \quad x \equiv 6 \bmod 7 \\
& \Rightarrow \quad x=6+7 t, \quad \text { for } t \in \mathbb{Z} .
\end{aligned}
$$

Plug this into $3 x \equiv 4(\bmod 8)$

$$
\begin{array}{lrl}
\Rightarrow & 3(6+7 t) & \equiv 4 \bmod 8 \\
\Rightarrow & \quad 5 t & \equiv 2 \bmod 8 \\
& \Rightarrow \quad 5(5 t \equiv 2) \bmod 8 \\
& \Rightarrow & \quad t \equiv 2 \bmod 8 \\
& \Rightarrow & t \\
& =2+8 s, \quad \text { for } \quad s \in \mathbb{Z}
\end{array}
$$

Plug $t=2+8$ s back in $x=6+7 t$

$$
\begin{aligned}
& =6+7(2+8 s) \\
& =20+56 s \Rightarrow x \equiv 20(\bmod 56)
\end{aligned}
$$

$x=3+4 t$, for $t \in \mathbb{Z}$
Reduce modal 6: $3+4 t \equiv 0 \bmod 6 \Rightarrow 4 t \equiv-3(\bmod 6)$. This has no solution because $\operatorname{gcd}(4,6) \nmid-3$.
(2)
chinese reminder theorem (number theory version): Let $n_{1}, \ldots, n_{k} \in \mathbb{Z}^{\dagger}$ be pairwise coprime. For any $a_{1}, \ldots, a_{k} \in \mathbb{Z}, \exists x \in \mathbb{Z}$ that solves the system

$$
\left\{\begin{array}{c}
x \equiv a_{1}\left(\bmod n_{1}\right) \\
\vdots \\
x \equiv a_{k} \\
\left(\bmod n_{k}\right)
\end{array}\right.
$$

Moreover, all solutions are congruent modulo $N=n_{1} n_{2} \cdots n_{k}$.
This is a special case of a much more general result.
Groups: If $H \leq G$, then $x \equiv y(\bmod H)$ if $y^{-1} x \in H$.
(or $x-y \in H$ in additive notation)
Rings: If $I \unlhd R$, then $r \equiv s \bmod I$ if $r-s \in I$.
Warm-up: If $I, J \triangleq R$, then $I J=(a b \mid a \in I, b \in J)$

$$
=\left\{a_{1} b_{1}+\ldots+a_{k} b_{k} \mid a_{i} \in I, b_{j} \in J\right\} \subseteq I \cap J
$$

Examples: $(9)(6)=(54) \subseteq \mathbb{Z}$ product
$(9) \cap(6)=(18)$ 1 cm
$(9)+(6)=(3) \quad g e d$
Remark: In $\mathbb{Z}, \operatorname{gcd}(x, y)=1$ iff $\exists a, b \in \mathbb{Z}$ s.t. $a x+b y=1 \quad(a$ unit), or equivalently, $(x)+(y)=\mathbb{Z}$.
Def: Two ideals I, J of R are co-prime if $I+I=R$.
Chinese Remainder Theorem (rings, 2 ideals). Let R have I and I, J be co-prime ideals. Then for any $r_{1}, r_{2} \in R, \exists r \in R$ st $r-r_{1} \in I$ and $r-r_{2} \in J$, ie., r solves the system $\begin{cases}x \equiv r_{1} & \bmod I \\ x \equiv r_{2} & \bmod J\end{cases}$

Pf: Write $1=a+b, a \in I, b \in J$, and set $r=r_{2} a+r_{1} b$.
why this works:

$$
\begin{aligned}
& r-r_{1}=\left(r-r_{1} b\right)+r_{1}(b-1)=r_{2} a+r_{1}(b-1)=r_{2} a-r_{1} a=\left(r_{2}-r_{1}\right) a \in I \\
& r-r_{2}=\left(r-r_{2} a\right)+r_{2}(a-1)=r_{1} b+r_{2}(a-1)=r_{1} b-r_{2} b=\left(r_{1}-r_{2}\right) b \in J
\end{aligned}
$$

Chinese Remainder Theorem (ring version): Let R be a ring with 1, and I_{1}, \ldots, I_{n} pairwise co-prime ideals. Then for any $r_{1}, \ldots, r_{n} \in R$, $\exists r \in R$ st. $x=r$ solves the system $\left\{\begin{array}{cc}x \equiv r_{1} & \bmod I_{1} \\ \vdots & \\ x \equiv r_{n} & \bmod I_{n} .\end{array}\right.$
Moreover, any 2 solutions are congruent modulo $I_{1} n \ldots n I_{n}$.
Pf: $n=1$ For $j=2, \ldots, n$, write $1=a_{j}+b_{j}$, where $a_{j} \in I_{1}, b_{j} \in I_{j}$.
Then $1=\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{n}\right)$

$$
=a_{2}\left(a_{3}+b_{3}\right) \cdots\left(a_{n}+b_{1}\right)+b_{2}\left(a_{3}+b_{3}\right) \cdots\left(a_{1}+b_{n}\right) \in I_{1}+\prod_{j=2}^{n} I_{j}=R .
$$

Now apply the CRT for 2 ideals to the system $\left\{\begin{array}{l}X \equiv 1 \bmod I_{1} \\ X \equiv 0 \bmod \prod_{j=2}^{n} I_{j}\end{array}\right.$ Note that $S_{1} \equiv 0 \bmod I_{j}$ for $j=2, \ldots, n$.

Similarly, let s_{k} be a solution to $\left\{\begin{array}{l}x \equiv 1 \bmod I_{k} \\ x \equiv 0 \bmod \prod_{j \neq k} I_{j}\end{array}\right.$
Now, set $r=r_{1} s_{1}+\cdots+r_{n} s_{n}$.
Note that $r \equiv r_{j} \bmod I_{j}$

Now, if $s \in R$ is another solution, then $s \equiv r_{j} \equiv r \bmod I_{j} \quad \forall j=1, \ldots, n$, and so $s \equiv r \bmod \bigcap_{j=1}^{n} I_{j}$.

Cor: Let I_{1}, \ldots, I_{n} be ideals of R. Then \exists ring homos

$$
g: R /\left(I_{1} \cap \cdots \cap I_{n}\right) \longleftrightarrow R / I_{1} \times \cdots \times R / I_{n}
$$

Moreover, if $I \in R$ and $I_{j}+I_{k}=R \quad F_{j} \neq k$, then g is an Bomarphisn.
Pf: let $f: R \rightarrow R / I_{1} \times \ldots \times R / I_{n}$ be the canonical mapping,

$$
r \longmapsto\left(r+I_{1}, \ldots, r+I_{n}\right) .
$$

This is clearly a homom. with her $f=I, n \ldots \cap I_{n}$.
By the FITT, \exists ! g that we seed.

- This is H became of the CRT:
all solutions are congrant modulo $\bigcap_{j=1} I_{j}$

- If the I_{j} 's are pairwise co-prime, then g is onto by the CRT (every system can be solved)
Example of CRT: let $R=\mathbb{Z}$ and $I_{j}=\left(m_{j}\right)$ for $j=1, \ldots, n$ with $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$. Then $I_{1} \cap \cdots \cap I_{n}=\left(m_{1} m_{2} \cdots m_{n}\right)$ and $\mathbb{Z}_{m_{1} m_{2} \cdots m_{n}} \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}}$:
Cor: Let $n=\rho_{1}^{d_{1}} \ldots \rho_{n}^{d_{n}}$, distinct primes ρ_{j}. Then

$$
\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}}^{d_{1}} \times \cdots \times \mathbb{Z}_{p_{n}}^{d_{n}} .
$$

Remand: IF R is a Endidean doman, then the proof of the CRT is constructive.

Specifically, use the Euclidean algorithm to write

$$
C_{k} m_{k}+d_{k} \prod_{j \neq k} m_{j}=\operatorname{gcd}\left(m_{k}, \prod_{j \neq k} m_{j}\right)=1 \quad \text { where } \quad I_{j}=\left(m_{j}\right)
$$

Then set $S_{n}=d_{k} \prod_{j \neq k} m_{j}$ and $r=r_{1} s_{1}+\cdots+r_{n} S_{n}$ is the sole,

