# Section 2.6: Divisibility and factorization 

Matthew Macauley<br>Department of Mathematical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra I

## Motivation

A ring is in some sense, a generalization of the familiar number systems like $\mathbb{Z}, \mathbb{R}$, and $\mathbb{C}$, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

- multiplication is commutative,
- there are no (nonzero) zero divisors.


## Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, $R$ is assumed to be an integral domain, and we will define $R^{*}:=R \backslash\{0\}$.

The integers have several basic properties that we usually take for granted:
■ every nonzero number can be factored uniquely into primes;

- any two numbers have a unique greatest common divisor and least common multiple;
- there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains. We would like to understand this better.

## Divisibility

## Definition

If $a, b \in R$, say that $a$ divides $b$, or $b$ is a multiple of $a$ if $b=a c$ for some $c \in R$. We write $a \mid b$.

If $a \mid b$ and $b \mid a$, then $a$ and $b$ are associates, written $a \sim b$.

## Examples

- $\ln \mathbb{Z}: n$ and $-n$ are associates.
- In $\mathbb{R}[x]: f(x)$ and $c \cdot f(x)$ are associates for any $c \neq 0$.
- The only associate of 0 is itself.
- The associates of 1 are the units of $R$.


## Exercise

Two elements $a, b \in R$ are associates if and only if $a=b u$ for some unit $u \in U(R)$.

This defines an equivalence relation on $R$, and partitions $R$ into equivalence classes.

Irreducibles and primes
Note that units divide everything: if $b \in R$ and $u \in U(R)$, then $u \mid b$.

## Definition

If $b \in R$ is not a unit, and the only divisors of $b$ are units and associates of $b$, then $b$ is irreducible.

An element $p \in R$ is prime if $p$ is not a unit, and $p \mid a b$ implies $p \mid a$ or $p \mid b$.

## Proposition

If $0 \neq p \in R$ is prime, then $p$ is irreducible.

## Proof

Suppose $p$ is prime but not irreducible. Then $p=a b$ with $a, b \notin U(R)$.
Then (wlog) $p \mid a$, so $a=p c$ for some $c \in R$. Now,

$$
p=a b=(p c) b=p(c b)
$$

This means that $c b=1$, and thus $b \in U(R)$, a contradiction.

Irreducibles and primes

## Caveat: Irreducible $\nRightarrow$ prime

Consider the ring $R_{-5}:=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$.

$$
3 \mid(2+\sqrt{-5})(2-\sqrt{-5})=9=3 \cdot 3,
$$

but $3 \nmid 2+\sqrt{-5}$ and $3 \nmid 2-\sqrt{-5}$.
Thus, 3 is irreducible in $R_{-5}$ but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles need be the same!

For example, consider the ring $R=\mathbb{Z}\left[x^{2}, x^{3}\right]$. Then

$$
x^{6}=x^{2} \cdot x^{2} \cdot x^{2}=x^{3} \cdot x^{3} .
$$

The element $x^{2} \in R$ is not prime because $x^{2} \mid x^{3} \cdot x^{3}$ yet $x^{2} \nmid x^{3}$ in $R$ (note: $x \notin R$ ).

## Principal ideal domains

Fortunately, there is a type of ring where such "bad things" don't happen.

## Definition

An ideal I generated by a single element $a \in R$ is called a principal ideal. We denote this by $I=(a)$.

If every ideal of $R$ is principal, then $R$ is a principal ideal domain (PID).

## Examples

The following are all PIDs (stated without proof):

- The ring of integers, $\mathbb{Z}$.
- Any field $F$.
- The polynomial ring $F[x]$ over a field.

As we will see shortly, PIDs are "nice" rings. Here are some properties they enjoy:
■ pairs of elements have a "greatest common divisor" \& "least common multiple";

- irreducible $\Rightarrow$ prime;

■ Every element factors uniquely into primes.

Greatest common divisors \& least common multiples

## Proposition

If $I \subseteq \mathbb{Z}$ is an ideal, and $a \in I$ is its smallest positive element, then $I=(a)$.

## Proof

Pick any positive $b \in I$. Write $b=a q+r$, for $q, r \in \mathbb{Z}$ and $0 \leq r<a$.
Then $r=b-a q \in I$, so $r=0$. Therefore, $b=q a \in(a)$.

## Definition

A common divisor of $a, b \in R$ is an element $d \in R$ such that $d \mid a$ and $d \mid b$.
Moreover, $d$ is a greatest common divisor (GCD) if $c \mid d$ for all other common divisors $c$ of $a$ and $b$.

A common multiple of $a, b \in R$ is an element $m \in R$ such that $a \mid m$ and $b \mid m$.
Moreover, $m$ is a least common multiple (LCM) if $m \mid n$ for all other common multiples $n$ of $a$ and $b$.

## Nice properties of PIDs

## Proposition

If $R$ is a PID, then any $a, b \in R^{*}$ have a GCD, $d=\operatorname{gcd}(a, b)$.
It is unique up to associates, and can be written as $d=x a+y b$ for some $x, y \in R$.

## Proof

Existence. The ideal generated by $a$ and $b$ is

$$
I=(a, b)=\{u a+v b: u, v \in R\} .
$$

Since $R$ is a PID, we can write $I=(d)$ for some $d \in I$, and so $d=x a+y b$.
Since $a, b \in(d)$, both $d \mid a$ and $d \mid b$ hold.
If $c$ is a divisor of $a \& b$, then $c \mid x a+y b=d$, so $d$ is a GCD for $a$ and $b$. $\checkmark$
Uniqueness. If $d^{\prime}$ is another GCD, then $d \mid d^{\prime}$ and $d^{\prime} \mid d$, so $d \sim d^{\prime} . \checkmark$

## Nice properties of PIDs

## Corollary

If $R$ is a PID, then every irreducible element is prime.

## Proof

Let $p \in R$ be irreducible and suppose $p \mid a b$ for some $a, b \in R$.

If $p \nmid a$, then $\operatorname{gcd}(p, a)=1$, so we may write $1=x a+y p$ for some $x, y \in R$. Thus

$$
b=(x a+y p) b=x(a b)+(y b) p
$$

Since $p \mid x(a b)$ and $p \mid(y b) p$, then $p \mid x(a b)+(y b) p=b$.

Not surprisingly, least common multiples also have a nice characterization in PIDs.

## Proposition (HW)

If $R$ is a PID, then any $a, b \in R^{*}$ have an LCM, $m=\operatorname{Icm}(a, b)$.
It is unique up to associates, and can be characterized as a generator of the ideal $I:=(a) \cap(b)$.

## Unique factorization domains

## Definition

An integral domain is a unique factorization domain (UFD) if:
(i) Every nonzero element is a product of irreducible elements;
(ii) Every irreducible element is prime.

## Examples

1. $\mathbb{Z}$ is a UFD: Every integer $n \in \mathbb{Z}$ can be uniquely factored as a product of irreducibles (primes):

$$
n=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{k}^{d_{k}} .
$$

This is the fundamental theorem of arithmetic.
2. The ring $\mathbb{Z}[x]$ is a UFD, because every polynomial can be factored into irreducibles. But it is not a PID because the following ideal is not principal:

$$
(2, x)=\{f(x): \text { the constant term is even }\}
$$

3. The ring $R_{-5}$ is not a UFD because $9=3 \cdot 3=(2+\sqrt{-5})(2-\sqrt{-5})$.
4. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.

## Unique factorization domains

## Theorem

If $R$ is a PID, then $R$ is a UFD.

## Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A ring is Noetherian if every ascending chain of ideals

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots
$$

stabilizes, meaning that $I_{k}=I_{k+1}=I_{k+2}=\cdots$ holds for some $k$.
Suppose $R$ is a PID. It is not hard to show that $R$ is Noetherian (HW). Define

$$
X=\left\{a \in R^{*} \backslash U(R): \text { a can't be written as a product of irreducibles }\right\} .
$$

If $X \neq \emptyset$, then pick $a_{1} \in X$. Factor this as $a_{1}=a_{2} b$, where $a_{2} \in X$ and $b \notin U(R)$. Then $\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq R$, and repeat this process. We get an ascending chain

$$
\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right) \subsetneq \cdots
$$

that does not stabilize. This is impossible in a PID, so $X=\emptyset$.

## Summary of ring types



## The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the Elements, in which he described what is now known as the Euclidean algorithm:


## Proposition VII. 2 (Euclid's Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then $\operatorname{gcd}(a, b)=a$;
- If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

This is best seen by an example: Let $a=654$ and $b=360$.

$$
\begin{array}{ll}
654=360 \cdot 1+294 & \operatorname{gcd}(654,360)=\operatorname{gcd}(360,294) \\
360=294 \cdot 1+66 & \operatorname{gcd}(360,294)=\operatorname{gcd}(294,66) \\
294=66 \cdot 4+30 & \operatorname{gcd}(294,66)=\operatorname{gcd}(66,30) \\
66=30 \cdot 2+6 & \operatorname{gcd}(66,30)=\operatorname{gcd}(30,6) \\
30=6 \cdot 5 & \operatorname{gcd}(30,6)=6 .
\end{array}
$$



We conclude that $\operatorname{gcd}(654,360)=6$.

## Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

## Definition

An integral domain $R$ is Euclidean if it has a degree function $d: R^{*} \rightarrow \mathbb{Z}$ satisfying:
(i) non-negativity: $d(r) \geq 0 \quad \forall r \in R^{*}$.
(ii) monotonicity: $d(a) \leq d(a b)$ for all $a, b \in R^{*}$.
(iii) division-with-remainder property: For all $a, b \in R, b \neq 0$, there are $q, r \in R$ such that

$$
a=b q+r \quad \text { with } \quad r=0 \quad \text { or } \quad d(r)<d(b)
$$

Note that Property (ii) could be restated to say: If $a \mid b$, then $d(a) \leq d(b)$;

## Examples

■ $R=\mathbb{Z}$ is Euclidean. Define $d(r)=|r|$.

- $R=F[x]$ is Euclidean if $F$ is a field. Define $d(f(x))=\operatorname{deg} f(x)$.
- The Gaussian integers $R_{-1}=\mathbb{Z}[\sqrt{-1}]=\{a+b i: a, b \in \mathbb{Z}\}$ is Euclidean with degree function $d(a+b i)=a^{2}+b^{2}$.


## Euclidean domains

## Proposition

If $R$ is Euclidean, then $U(R)=\left\{x \in R^{*}: d(x)=d(1)\right\}$.

## Proof

$\subseteq$ ": First, we'll show that associates have the same degree. Take $a \sim b$ in $R^{*}$ :

$$
\begin{aligned}
& a \mid b \quad \Longrightarrow d(a) \leq d(b) \\
& b \mid a \quad \Longrightarrow \quad d(b) \leq d(a)
\end{aligned} \quad \Longrightarrow \quad d(a)=d(b)
$$

If $u \in U(R)$, then $u \sim 1$, and so $d(u)=d(1)$. $\checkmark$
" $\supseteq$ ": Suppose $x \in R^{*}$ and $d(x)=d(1)$.
Then $1=q x+r$ for some $q \in R$ with either $r=0$ or $d(r)<d(x)=d(1)$.
If $r \neq 0$, then $d(1) \leq d(r)$ since $1 \mid r$.
Thus, $r=0$, and so $q x=1$, hence $x \in U(R)$.

## Euclidean domains

## Proposition

If $R$ is Euclidean, then $R$ is a PID.

## Proof

Let $I \neq 0$ be an ideal and pick some $b \in I$ with $d(b)$ minimal.

Pick $a \in I$, and write $a=b q+r$ with either $r=0$, or $d(r)<d(b)$.
This latter case is impossible: $r=a-b q \in I$, and by minimality, $d(b) \leq d(r)$.
Therefore, $r=0$, which means $a=b q \in(b)$. Since $a$ was arbitrary, $I=(b)$.

## Exercises.

(i) The ideal $I=(3,2+\sqrt{-5})$ is not principal in $R_{-5}$.
(ii) If $R$ is an integral domain, then $I=(x, y)$ is not principal in $R[x, y]$.

## Corollary

The rings $R_{-5}$ (not a PID or UFD) and $R[x, y]$ (not a PID) are not Euclidean.

## Algebraic integers

The algebraic integers are the roots of monic polynomials in $\mathbb{Z}[x]$. This is a subring of the algebraic numbers (roots of all polynomials in $\mathbb{Z}[x]$ ).

Assume $m \in \mathbb{Z}$ is square-free with $m \neq 0,1$. Recall the quadratic field

$$
\mathbb{Q}(\sqrt{m})=\{p+q \sqrt{m} \mid p, q \in \mathbb{Q}\} .
$$

## Definition

The ring $R_{m}$ is the set of algebraic integers in $\mathbb{Q}(\sqrt{m})$, i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials $x^{2}+c x+d \in \mathbb{Z}[x]$.

## Facts

- $R_{m}$ is an integral domain with 1.
- Since $m$ is square-free, $m \not \equiv 0(\bmod 4)$. For the other three cases:

$$
R_{m}= \begin{cases}\mathbb{Z}[\sqrt{m}]=\{a+b \sqrt{m}: a, b \in \mathbb{Z}\} & m \equiv 2 \text { or } 3 \quad(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right]=\left\{a+b\left(\frac{1+\sqrt{m}}{2}\right): a, b \in \mathbb{Z}\right\} & m \equiv 1 \quad(\bmod 4)\end{cases}
$$

- $R_{-1}$ is the Gaussian integers, which is a PID. (easy)
- $R_{-19}$ is a PID. (hard)


## Algebraic integers

## Definition

For $x=r+s \sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of $x$ to be

$$
N(x)=(r+s \sqrt{m})(r-s \sqrt{m})=r^{2}-m s^{2} .
$$

$R_{m}$ is norm-Euclidean if it is a Euclidean domain with $d(x)=|N(x)|$.

Note that the norm is multiplicative: $N(x y)=N(x) N(y)$.

## Exercises

Assume $m \in \mathbb{Z}$ is square-free, with $m \neq 0,1$.
■ $u \in U\left(R_{m}\right)$ iff $|N(u)|=1$.

- If $m \geq 2$, then $U\left(R_{m}\right)$ is infinite.
- $U\left(R_{-1}\right)=\{ \pm 1, \pm i\}$ and $U\left(R_{-3}\right)=\left\{ \pm 1, \pm \frac{1 \pm \sqrt{-3}}{2}\right\}$.
- If $m=-2$ or $m<-3$, then $U\left(R_{m}\right)=\{ \pm 1\}$.

Euclidean domains and algebraic integers

## Theorem

$R_{m}$ is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\}
$$

## Theorem (D.A. Clark, 1994)

The ring $R_{69}$ is a Euclidean domain that is not norm-Euclidean.

Let $\alpha=(1+\sqrt{69}) / 2$ and $c>25$ be an integer. Then the following degree function works for $R_{69}$, defined on the prime elements:

$$
d(p)=\left\{\begin{array}{cl}
|N(p)| & \text { if } p \neq 10+3 \alpha \\
c & \text { if } p=10+3 \alpha
\end{array}\right.
$$

## Theorem

If $m<0$ and $m \notin\{-11,-7,-3,-2,-1\}$, then $R_{m}$ is not Euclidean.

## Open problem

Classify which $R_{m}$ 's are PIDs, and which are Euclidean.

## PIDs that are not Euclidean

## Theorem

If $m<0$, then $R_{m}$ is a PID iff

$$
m \in\{\underbrace{-1,-2,-3,-7,-11}_{\text {Euclidean }},-19,-43,-67,-163\} .
$$

Recall that $R_{m}$ is norm-Euclidean iff

$$
m \in\{-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\} .
$$

## Corollary

If $m<0$, then $R_{m}$ is a PID that is not Euclidean iff $m \in\{-19,-43,-67,-163\}$.

## Algebraic integers



Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red $=1$ (algebraic integer), green $=2$, blue $=3$, yellow $=4$. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).

## Algebraic integers

i

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree $\leq 7$ with coefficients from $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. From Wikipedia.

## Summary of ring types



