Infinity Tues $8 / 27$
What do we mean by infinity?
Numbers? Lines? Space? Something else?
How does infinity arise in art i architecture?
Can we do math with infinity?

$$
\frac{1}{0}=\infty, \quad \frac{1}{0}=-\infty, \quad \frac{1}{\infty}=0, \quad \frac{0}{0}=? \quad \infty+\infty=\infty, \quad \infty-\infty=? \quad \frac{\infty}{\infty}=?
$$

Bird example: 2 farmers plant 1 seed/day.
A bird eats one seed every 4 days.

$$
\begin{aligned}
& \text { Farmer 1: } 123 X^{E^{\text {day }} 4} 6 \quad 7 \quad \mathbb{K}^{4} 910 \ldots \\
& \text { Farmer 2: } X \mathbb{X} 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \ldots \\
& \operatorname{day}^{4} \uparrow \tau_{\text {day }} 8
\end{aligned}
$$

How many seeds are left "at the end of time"?
wed $8 / 28$
Question: Are all infinities the same "size"?
What does this even mean?

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3,4,5,6, \ldots\} \quad \text { "Natural numbers" } \\
2 \mathbb{N} & =\{2,4,6,8,10,12, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\} \quad \text { "integers" } \\
& =\{0,1,-1,2,-2, \ldots\} \\
\mathbb{Q} & =\left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{N}, \operatorname{gcd}(a, b)=1\right\} \quad \text { "rational numbers" } \\
\mathbb{R} & =\{\text { all real numbers }\} \quad \text { "real numbers" }
\end{aligned}
$$

Note: $\quad 2 \mathbb{N} \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subseteq \mathbb{R}$.
Hilbert's hotel

1	2	3	4	5	6	7	8	\cdots

No Vacancy: Infinite buses arrive:
$\square \mathbb{N}$

How to give them rooms?
Proof that $|\mathbb{N}|=\left|\mathbb{Q}^{+}\right|$

Proof that $|\mathbb{N}|<|\mathbb{R}|$. "Cantor's diagonal argument", 1891 Suppose it were false, and we could order them:

Room 1	$0.1023+802009 \ldots$
Room 2	$3.81892013481 \ldots$
Room 3	$16.00221986623 \ldots$
Room 4	4.0881 25 $2565 \ldots$
Room 5	5.1823 国39514 \ldots
Room 6	$3.14159228535 \ldots$

The following number is not on this list:
$0.293203 \ldots$ (add 1 to each boxed digit).
This contradicts the hypothesis that we could have ordered the real \#'s in the first place.
Timeline 1889: Cantor proved $|\mathbb{Q}|<|\mathbb{R}|$
Cantor then worked on "contimmm hypothesis"; is there an infinity between these two?
1899-1917: Cantor in is ont of sanatorium.
1940: Gödel's incompleteness theorem
1963: Cohen proves the continuum hypothesis is undecidable.
Goldbach conjecture: Every even number >2 can be written as a sum of two primes.
still unpoven. Is it also undecidable???
Fri $8 / 30$
Two Fun Facts about $|\mathbb{N}|=|\mathbb{Q}|<|\mathbb{R}|$:
(1) we can "cover" the rationals with intervals of total berth 1 .

$$
\text { Put } n^{\text {dh }} \text { "ball" } \longleftrightarrow \text {, of length }\left(\frac{1}{2}\right)^{n} \text {, }
$$

 around the $n^{\text {th }}$ rational number.
(2) There are countally many computer programs (strings of 0,1), but uncountable many real numbers. So most are uncompentable!

Review of functions
Domain: All passible inputs
Range: All possible outputs
Examples:
(1) $f(x)=x^{2}$

D: $(-\infty, \infty)$ or \mathbb{R} or $-\infty<x<\infty$
R: $[0, \infty)$ or $f(x) \geqslant 0$
(2) $f(x)=e^{x}$ \qquad D: $(-\infty, \infty)$
R: $(0, \infty)$ or $f(x)>0$.
(3) $f(x)=\ln x$

D: $(0, \infty)$
Recall: $e^{\ln x}=\ln e^{x}=x$
"inverse functions"
(4) $f(x)=\frac{1}{x}$

D: $x \neq 0$ or $(-\infty, 0) \cup(0, \infty)$
R: $f(x) \neq 0$
(5) $f(x)=\frac{x^{3}}{x}\left(=x^{2}\right.$ if $\left.x \neq 0\right)$

$$
\text { D: } \quad x \neq 0
$$

$$
\underline{R}: f(x)>0
$$

(6) $f(x)=x(60-2 x)$

D: $(-\infty, \infty)$
R: $f(x) \leqslant 450$
(7) Let $A(x)=$ area of a rectangular pen built with 60 feet of fence, with one side an existing brick wall

D: $0<x<30$
R: $0<A(x)<450$
Note: $A(x)=x(60-2 x)$

Mon 9/2
Limits
Def (informal): $\lim _{x \rightarrow a} f(x)$ is what $f(a)$ "should be"
Ex 1:

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & x \neq 0 \\
? & x=0
\end{array} \quad \lim _{x \rightarrow 0} f(x)=0\right.
$$

Ex 2:

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & x \neq 0 \\
2 & x=0
\end{array} \quad \lim _{x \rightarrow 0} f(x)=0 .\right.
$$

We can define the:

- left-hand limit $\lim _{x \rightarrow a^{-}} f(x)$
- right hard limit $\lim _{x \rightarrow a^{+}} f(x)$

Ex 3:

So $\lim _{x \rightarrow 0} F(x)$ DNA
"does not exist"
Note that $f(0)=0$.
Def: The limit of $f(x)$ at $x=a$ exists when the left-hand is right -hand limits $f f(x)$ at $x=a$ exist. We write

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)
$$

Def: The function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.
More examples
Ex 4: $f(x)=\frac{x^{3}}{x}= \begin{cases}x^{2} & x \neq 0 \\ \text { undefined } & x=0\end{cases}$

Limits at infinity: We can also define $\lim _{x \rightarrow \infty} f(x)$, thous it man g or may not exist.

Ex 5: $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=-\infty \quad(\text { DNE }) \\
& \lim _{x \rightarrow 0^{+}} f(x)=\infty \quad \text { (DNE) } \\
& \lim _{x \rightarrow 0} f(x) \text { DNE }
\end{aligned}
$$

Sequencer can have limits.
Ex 6: Let $a_{n}=\frac{1}{n}$ (defines the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots$)
We say that $\lim _{n \rightarrow \infty} a_{n}=0$.
Many sequeras don't have limits, eg,

$$
\begin{aligned}
& 1,2,3,4,5,6, \ldots \\
& 0,1,0,1,0,1, \ldots \\
& 1,0,1,0,0,1,0,0,0,1,0,0,0,0,1, \ldots
\end{aligned}
$$

How to find $\lim _{x \rightarrow a} f(x)$

- First, try plugging in $x=a$.
- If that doessit work, graph $f(x)$, try to determine $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x)$
* Limits generally behave like yon'd expect
- $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$, provided these exist.
- $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Ex 7: $\lim _{x \rightarrow 0} \frac{2 x^{2}+3 x}{x}=\lim _{x \rightarrow 0} \frac{2 x^{2}}{x}+\lim _{x \rightarrow 0} \frac{3 x}{x}=\lim _{x \rightarrow 0} 2 x+\lim _{x \rightarrow 0} 3$

$$
=0+3=3
$$

Ex 8: $\lim _{x \rightarrow 0} x \sin x=\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \sin x$

$$
=0 \cdot 0=0
$$

what could go wrong:
Ex 9: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{1}{x} \cdot \lim _{x \rightarrow 0} \sin x$

$$
"=" \quad 0 \quad=? ? ?
$$

other things can get weird
Just for fun... . et $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$

Wed 9/3
Let's review some basic functions; how to graph them.
Constants: $\quad f(x)=1$

Liver: $\quad f(x)=m x+b$

$$
\begin{aligned}
b= & y \text {-interest } \\
m= & \text { slope } \\
& \hat{L}^{\prime \prime} \frac{\text { rise" }}{\text { rus }}
\end{aligned}
$$

Polyromials $f(x)=x^{2}$

x^{-n}

Exponential: :

Others.

Def: A rational function is the quotient of two polynomids. Limits of rational functions (what to try, for $\lim _{x \rightarrow a} f(x)$)

1. Plug in $x=a$
2. Factor top i bottom, e.g., $\lim _{x \rightarrow 1} \frac{x-1}{\left(x^{2}-6 x+5\right)}=\lim _{x \rightarrow 1} \frac{(x-1)}{(x-1)(x-5)}=\frac{-1}{4}$
3. Graph it, inspect, let is right-hand limits.

Limits of rational functions at so: "big guy over big guy".
Ex: $\lim _{x \rightarrow \infty} \frac{\left(3 x^{5}-4 x^{2}+6\right.}{4 x^{5}+10 x}=\lim _{x \rightarrow \infty} \frac{3 x^{5}}{4 x^{5}}=\lim _{x \rightarrow \infty} \frac{3}{4}$
, $\lim _{x \rightarrow \infty} \frac{x+2}{x+y}=\lim _{x \rightarrow \infty} \frac{x}{x}=\lim _{x \rightarrow \infty} 1=1$
, $\lim _{x \rightarrow \infty} \frac{8 x^{3}-2}{\left(x^{4}+2 x^{2}\right.}=\lim _{x \rightarrow \infty} \frac{8 x^{3}}{x^{4}}=\lim _{x \rightarrow \infty} \frac{8}{x}=0$.

- $\lim _{x \rightarrow \infty} \frac{5 x^{6}+3 x-1}{4 x^{4}+2}=\lim _{x \rightarrow \infty} \frac{5 x^{6}}{4 x^{4}}=\lim _{x \rightarrow \infty} \frac{5}{4} x^{2}=\infty \quad$ (DNE)
- $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}+2 x}}{2 x^{3}+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}}}{2 x^{3}}=\lim _{x \rightarrow \infty} \frac{3 x^{3}}{2 x^{3}}=\lim _{x \rightarrow \infty} \frac{3}{2}=\frac{3}{2}$

Note: $\sqrt{9 x^{6}}=\sqrt{9} \sqrt{x^{6}}=3 \cdot\left(x^{6}\right)^{1 / 2}=3 x^{3}$

* Think of $\lim _{x \rightarrow \infty} f(x)$ as what we get if we "ply in ∞ "

Ex: $\lim _{x \rightarrow \infty} \frac{3}{e^{x}+3 x}=\frac{3}{\infty}=0$

- $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=\frac{?}{\infty}=0$
- $\lim _{x \rightarrow \infty} \frac{3 x}{e^{x}}=? 77$. [Intuition: O because e^{x} "grows faster]
well learn how to do this (dater... [reed calculus)
Fri 9/6

The formal definition of a limit: $\lim _{x \rightarrow c} f(x)=L$ means: $\forall \varepsilon>0, \exists \delta>0$ such that if $0<|x-c|<\delta$, then $|f(x)-L|<\varepsilon$. "for all"

Picture of this:
"there exists"
there exists
L

L-

If the input x is within this range, then the out put will be within ε of L.

