$F_{\text {ri. }} 9 / 6$
Motivating example (recall):
$\$ 2 / \mathrm{ft} \rightarrow \frac{12}{x} \quad A=12 \quad \frac{12}{x}$
The cost to build a fence around a
$12 \mathrm{ft}^{2}$ region is $c(x)=\$ 5 x+\$ 2\left(\frac{12}{x}+x+\frac{12}{x}\right)$

$$
=7 x+\frac{24}{x}
$$

Goal: How to minimize $C(x)$.

Key observation: The minimum is where
the "tangent lire" is horizontal,

i.e, it has slope $m=0$

Recall: The slope of the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ if $x_{1} \neq x_{2}$. "rise over run"

positive slope
the line is rising

Negative slope
the lin is falling.

Think of the slope as a "stretching factor"

Mon 9/9
Average velocity let $x(t)$ be the position of a car at time t. Then the average velocity (rate of change) of $x(t) b / w t=a$ and $t=b$ is

$$
\frac{x(b)-x(a)}{b-a}
$$

Think abut how average velocity Compares to instantaneous velocity.

Example: Suppose $x(t)=t^{2}$, for $0 \leq t \leq 10$. What is the instantanears velocity at $t=1$?

Wrong a aswers

$$
\frac{x(1)-x(0)}{1-0}=\frac{1^{2}-0^{2}}{1}=1
$$

ave. vel blu $t=0 c^{c} t=1$

$$
\frac{x(2)-x(1)}{2-1}=\frac{2^{2}-1^{2}}{1}=3
$$

are vel blu $t=1 \quad \frac{1}{c}, t=2$

right answer (slope of this line)

ave vel ssw $t=1 \vdots t=1.1$

$$
\frac{x(1.01)-x(1))}{1.01-1}=\frac{1.01^{2}-1^{2}}{0.1}=2.01
$$

ave. vel. $b_{w} t=1: t=1.01$

$$
\begin{aligned}
& \frac{x(1+h)-x(1)}{(1+h)-1}=\frac{(1+h)^{2}-1^{2}}{h} \\
& =\frac{1+2 h+h^{2}-1}{2}=2+h
\end{aligned}
$$

Note: The instantaneous rate of charge at $t=1$ is $\lim _{h \rightarrow 0}(2+h)=2$.
Def. The instantaneous rate of change of $f(x)$ at $x=c$ is the function $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, called the derivative of $f(x)$, denoted $f^{\prime}(x)$.
\& $f^{\prime}(x)=$ "slope of the tangent line to f at $(x, f(x))$.
Ex: Consider the same function above, $f(t)=t^{2}$.
Compute the derivative of $f(t)$ at an arbitrary point t.
Ans: $\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}=\lim _{h \rightarrow 0} \frac{(t+h)^{2}-t^{2}}{h}=\lim _{h \rightarrow 0} \frac{t^{2}+2 h t+h^{2}-t^{x}}{h}$

$$
=\lim _{h \rightarrow 0}\left(\frac{2 h t}{h}+\frac{h^{2}}{h}\right)=\lim _{h \rightarrow 0}(2 t+h)=2 t \text {. }
$$

What this means:

Wed 9/11
The interplay between a function and its derivatives
Note: $f^{\prime}(x)>0$ means $f(x)$ is increasing, or "rising" $f^{\prime}(x)<0$ means $f(x)$ is decreasing, or "falling"

Ex: Compare $f(x)=x^{2}$ us. $f^{\prime}(x)=2 x$.

Def: If the tangent line at $(c, f(c))$ is horizontal, then c is a critical point.

Exercise: 1. Given a function $f(x)$, graph its derivative, $f^{\prime}(x)$.
2. Given the derivative $f^{\prime}(x)$, graph the function.

Fri 9/13
The second derivative:
Motivation let $X(t)=$ position of a car (or bull, etc.) at time t
Then $x^{\prime}(t)=$ rate of change of position

$$
=\text { velocity }=v(t)
$$

\star What is $v^{\prime}(t)$? "rate of change of velocity"?
Ans: "acceleration".
We call this the second derivative of $f(x)$, the "rate of change of the rate of change," denoted $f^{\prime \prime}(x)$.
what does the second derivative measure?

$$
f^{\prime \prime}>0
$$

$$
f^{\prime \prime}<0
$$

slope of tangent line is increasing
slope of tangent line is decreasing

"Concave up"

"concave down"

What about $f^{\prime \prime}=0$?
Ex:

\$ Key takeaway: If $f^{\prime \prime}=0$, we don't necessarily know abut the concavity.
Tangent line apporximation
Goals: (1) what is the formula for the tangent line approximation to $f(x)$ at $x=a$?
(2) How can we use this to approximate $f(x)$ for $x \approx a$?

Recall: Formals for a line thrash $\left(x_{0}, y_{0}\right)$ with slope m :

$$
\begin{aligned}
& \text { slope } m=\frac{y-y_{0}}{x-x_{0}} \\
& \Rightarrow y-y_{0}=m\left(x-x_{0}\right)
\end{aligned}
$$

Exercise: Find the tagged line apporximation to $f(x)=x^{2}$ at $x=1$. Use this to approximate $f(1.1)$.

Recall: $f^{\prime}(x)=2 x$, so $f^{\prime}(1)=2$
Here: $\left(x_{0}, y_{0}\right)=(1,1)$

$$
m=f^{\prime}(1)=
$$

So $\quad y-y_{0}=m\left(x-x_{0}\right)$
is $\quad y-1=2(x-1)$

$$
\Rightarrow y=2 x-1
$$

Now, use this to approximate $f(1.1)$.
$f(1.1) \approx 2(1.1)-1=1.2$. Actual value: $f(1.1)=1.1^{2}=1.21$
This only wastes for $x \approx 1$.
Mon 9/16
sometimes there is no linear approximation. This happens when you zoom in, the function doesn't look like a straight line.

EX:

not defined at $x=0$

not continuous at $x=0$

$$
f(x)=|x|
$$

not "differentiable" at $x=0$.

* How to characterize this?
$f(x)$ is: continuous at $x=a$ if: $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
differentiable at $x=a$ if: (1) $f(x)$ is continuous at $x=a$
and (2) $\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a^{+}} f^{\prime}(x)$
Non-example; how (2) could hold but (1) could fail:

