

Mon 9/9

Average velocity let x(t) be the position of a car at time t. Then the average velocity (rate of change) of x(t) blue tea and teb is $\frac{x(b)-x(a)}{b-a}$.

Think about how average velocity compares to instantaneous velocity.

Example: Suppose
$$X(t) = t^2$$
, for $0 \le t \le 10$.
What is the instantaneous velocity at $t = 1$?

right answer (slope of this line)

Wrong answers

Def: If the tangent line at (c, f(c)) is horizontal, then c is a critical point.

Exercise: I. Given a function fix), graph its derivative, flix). 2. Given the durivative fl(x), graph the function.

$$\Rightarrow y = 2x - 1$$
Now, use this to approximate $f(1,1)$.
 $f(1,1) \approx 2(1,1) - 1 = 1,2$. Actual value: $f(1,1) = (1^2 - 1,2)$
This only works for $x \approx 1$.
Mon $f(1)$
solutions there is no linear approximation. This happens when you zoom in, the subscript look like a straight line.
Ex:
not defined of $x=0$ and continuous of $x=0$ and "differentiable" at $x=0$.
K How to characterize this?
 $f(x)$ is: continuous at $x=a$ if: $\lim_{x\to a^+} f(x) = f(a)$
differentiable at $x=a$ if: (1) $f(x)$ is continuous at $x=a$
and (2) $\lim_{x\to a^+} f'(x) = \lim_{x\to a^+} f'(x)$
Near example; how (2) could hold but (1) could fult