Mon 9/16
Notation: Write $(f(x))^{\prime}$ for $f^{\prime}(x)$.
Derivatives of polynomials

- $\underline{f(x)}=x^{n}$, where $n=0,1,2, \ldots$

$$
\begin{aligned}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} & =\lim _{h \rightarrow 0} \frac{\left[x^{n}+n x^{n-1} h+x^{n+2} h^{2}+\cdots+h^{n}\right]-x^{x}}{h} \\
& =\lim _{h \rightarrow 0} n x^{n-1}+h[\cdots]=n x^{n-1}
\end{aligned}
$$

- Denvative of sums:

$$
\begin{aligned}
(f+g)^{\prime} & =\lim _{h \rightarrow 0} \frac{[f(x+h)-g(x+h)]-[f(x)+g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

- Derivatives si scalar multiplication:

$$
\begin{aligned}
(c f)^{\prime} & =\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x+h)}{h} \\
& =\lim _{h \rightarrow 0} c\left[\frac{f(x+h)-f(x)}{h}\right]=c \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=c \cdot f^{\prime}(x) .
\end{aligned}
$$

Now we can differentiate polynomials.
Example: $\left(x^{5}+4 x^{3}-6 x-2\right)^{\prime}=5 x^{4}+12 x^{2}-6$.
Remark: If $f(x)=c$, then $f^{\prime}(x)=0$.
Why: (1) Algebraic reason: $C=C \cdot x^{0} \Rightarrow f^{\prime}(x)=C \cdot O x^{-1}=0$.
(2) Graphical reason

c	$f(x)=c$
	a

Slope of the tangent line is zero everywhere.

Wed 9/18

- Reciprocal rule:

$$
\begin{aligned}
\left(\frac{1}{f}\right)^{\prime} & =\lim _{h \rightarrow 0} \frac{\left[\frac{1}{f(x+h)}-\frac{1}{f(x)}\right]}{h}=\lim _{h \rightarrow 0}\left[\frac{f(x)}{f(x+h) f(x)}-\frac{f(x+h)}{f(x+h) f(x)}\right] \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x)-f(x+h)}{f(x+h) f(x)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-[f(x+h)-f(x)]}{h} \cdot \frac{1}{f(x+h) f(x)} \\
& =-\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \cdot \lim _{h \rightarrow 0} \frac{1}{f(x+h) f(x)} \\
& =-f^{\prime}(x) \cdot \frac{1}{(f(x))^{2}}=-\frac{f^{\prime}(x)}{(f(x))^{2}}
\end{aligned}
$$

Example: Compute $\left(x^{-3}\right)^{\prime}=\left(\frac{1}{x^{3}}\right)^{\prime}$
Let $f(x)=x^{3}$, so $f^{\prime}(x)=3 x^{2}$.

$$
\left(x^{-3}\right)^{\prime}=\left(\frac{1}{f}\right)^{\prime}=\frac{-f^{\prime}(x)}{(f(x))^{2}}=\frac{-3 x^{2}}{\left(x^{3}\right)^{2}}=\frac{-3 x^{2}}{x^{6}}=-3 x^{-4}=\frac{-3}{x^{4}} \text {. }
$$

This generalizes further:
Example: Compute $\left(x^{-n}\right)^{\prime}=\left(\frac{1}{x^{n}}\right)^{\prime}$.
let $f(x)=x^{n}$, so $f^{\prime}(x)=n x^{n-1}$

$$
\left(x^{-n}\right)^{\prime}=\left(\frac{1}{f}\right)^{\prime}=\frac{-f^{\prime}(x)}{(f(x))^{2}}=\frac{-n x^{n-1}}{\left(x^{n}\right)^{2}}=\frac{-n x^{n-1}}{x^{2 n}}=-n x^{-n-1}=\frac{-n}{x^{n+1}}
$$

Remark: The formula $\left(x^{n}\right)^{\prime}=n x^{n-1}$ actually holds for all integers n.

- Product rule: Note that $(f \cdot g)^{\prime} \neq f^{\prime} \cdot g^{\prime}$!

$$
\begin{aligned}
(f g)^{\prime} & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\lim _{h \rightarrow 0} \frac{f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \cdot g(x+h)+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \cdot f(x) \\
& f^{\prime}(x) \cdot g(x)+\quad g^{\prime}(x) f(x)
\end{aligned}
$$

- Quotient rule Note that $(f / g)^{\prime} \neq f^{\prime} / g^{\prime}$!
key point: $\frac{f}{g}=f \cdot \frac{1}{g}$. Well use the product and reciprocal rules.

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}=\left(f \cdot \frac{1}{g}\right)^{\prime} & =f^{\prime} \cdot \frac{1}{g}+f \cdot\left(\frac{1}{g}\right)^{\prime} \\
& =\frac{f^{\prime}}{g}+f \cdot \frac{-g^{\prime}}{g^{2}}=\frac{f^{\prime} g}{g^{2}}-\frac{f g^{\prime}}{g^{2}}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
\end{aligned}
$$

Example: $\left(\frac{x^{3}-2 x^{2}-4}{x^{44}-16}\right)^{\prime}=\frac{\left(3 x^{2}-4 x\right)\left(x^{44}-16\right)-\left(x^{3}-2 x^{2}-4\right) \cdot 44 x^{43}}{\left(x^{44}-16\right)^{2}}$

Fri 9/20
Notation for derivatives:

Lagrange (Italy, 1736-1813): $f^{\prime}(x)$
Euler (Switzerland, 1707-83): Df
Newton (England, 1643-1727): \dot{y} adopted in Britian
Leibniz (Germany, 1646-1716): $\frac{d y}{d x} \quad$ adopted in Europe
Advantages of Leibniz's notation resulted in Britian falling behind $100-200$ hundred years to mainland Europe, mi thematically.

Leibniz's rotation: If $y=f(x)$, then $\frac{d y}{d x}=f^{\prime}(x)$
Motivating example: Slope of secant line is $\frac{\Delta y}{\Delta x}$.

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

Notational reasoning: Ancient Greek symbol Δ had endued "in the limit" to the modern "d."
Another way to interpret this. $\frac{d y}{d x}=\frac{d}{d x}(y)$.
Second derivative: $\frac{d}{d x}\left(\frac{d}{d x}(y)\right)=\frac{d^{2} y}{d x^{2}}$

Application to a problem from Day I:
Cost of fence is $c(x)=7 x+\frac{48}{x}=7 x+48 x^{-1}$
Goal: Find min of $c(x)$.

$$
\begin{aligned}
c^{\prime}(x)=7-48 x^{-2}=0 & \\
7-\frac{48}{x^{2}}=0 & \Rightarrow x^{2}=\frac{48}{7} \Rightarrow x= \pm \sqrt{\frac{48}{7}} \approx 2,619 \\
& \Rightarrow \text { min cost is } c(\sqrt{48 / 7}) \approx 36.661 .
\end{aligned}
$$

Mon. $9 / 23$
Next goal: Compute derivatives of trig functions.
Quick review:

$$
\begin{aligned}
& \sin x=\frac{\text { opp }}{h_{y p}} \\
& \cos x=\frac{\text { adj. }}{h_{y \rho} .} \\
& \tan x=\frac{\sin x}{\cos x}=\frac{\text { opp }}{\operatorname{adj} .}
\end{aligned}
$$

$$
\underbrace{\text { hyp. }}_{x} \quad \cos x=\frac{\text { adj. }}{\text { hyp. }} \text {. }
$$

Also, $\frac{1}{\sin x}=\csc x, \quad \frac{1}{\cos x}=\sec x, \quad \frac{1}{\tan x}=\cot x$

Weill reed the following result to compute $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$

Squeeze Theorem: Suppose $f(x) \leqslant g(x) \leqslant h(x)$ near a point $x=a$.

$$
\begin{aligned}
& \text { If } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L, \\
& \text { then } \lim _{x \rightarrow a} g(x)=L
\end{aligned}
$$

Application: Compute $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$

$$
\lim _{x \rightarrow 0} \sin \frac{1}{x} D N E
$$

$\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$ by square theorem

Formally: $-x^{2} \leqslant x^{2} \sin \frac{1}{x} \leqslant x^{2}$

$$
\text { as }\left.\left.x \rightarrow 0\right|_{0}\right|_{0} ^{b_{y}} \begin{aligned}
& s_{\text {freeze }} \\
& \text { the } \\
& 0
\end{aligned} \sum_{0} \text { as } x \rightarrow 0
$$

Tools weill need: Find $\lim _{h \rightarrow 0} \frac{\sin h}{h}$ and $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$.

* How to compute $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?

First, what "should" it be?

Wed $9 / 25$

Now, let's verify this.

area $\triangle A O D<$ area sector $A O C<$ area $\triangle O B C$

$$
\begin{aligned}
\text { (mull. by } \left.\frac{2}{\sin x}\right) & \Rightarrow \cos x \leqslant \frac{x}{\sin x} \leqslant \frac{1}{\cos x} \\
\text { (take reciprocal) } & \Rightarrow \frac{1}{\cos x} \geqslant \frac{\sin x}{x} \geqslant \cos x \\
& \underbrace{\lim _{x \rightarrow 0} \frac{1}{\cos x}}_{=1} \geqslant \lim _{x \rightarrow 0} \frac{\sin x}{x} \geqslant \underbrace{\lim _{x \rightarrow 0} \cos x}_{=1}
\end{aligned}
$$

Thus, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ by the Squeeze theorem.
Exercise: Show that $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$
(weill assume this as a fact, henceforth.)

Derivative of trig functions

$$
\begin{aligned}
& (\sin x)^{\prime}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{[\cos x \sin h+\sin x \cos h]-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos x \sinh }{h}+\lim _{h \rightarrow 0} \frac{\sin x(\cosh -1)}{h} \\
& =\lim _{h \rightarrow 0} \cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}+\lim _{h \rightarrow 0} \sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{x} \\
& =\cos x \cdot 1+\sin x \cdot 0=\cos x \\
& (\cos x)^{\prime}=\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{[\cos x \cos h-\sin x \sin h]-\cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos x(\cos h-1)}{h}-\lim _{h \rightarrow 0} \frac{\sin x \sin h}{h} \\
& =\lim _{h \rightarrow 0} \cos x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\lim _{h \rightarrow 0} \sin x \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\cos x \cdot 0-\sin x \cdot 1=-\sin x \\
& (\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{(\cos x)^{2}} \\
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{(\cos x)^{2}}=\frac{1}{(\cos x)^{2}}=\sqrt[(\sec x)^{2}]{ }
\end{aligned}
$$

Fri $9 / 27$
Dervatives of the other trig Functions can be found using the quotient rale.
Summary:

$$
\begin{array}{ll}
(\sin x)^{\prime}=\cos x & (\cos x)^{\prime}=-\sin x \\
(\tan x)^{\prime}=(\sec x)^{2} & (\cot x)^{\prime}=-(\csc x)^{2} \\
(\sec x)^{\prime}=\sec x \tan x & (\csc x)^{\prime}=-\csc x \cot x
\end{array}
$$

Note: The $2^{\text {nd }}$ column can be gotten from the $1^{s t}$ column by adding or removing "co", and a negative sign.

Chain rule Weill begin by motivating the concepts, multiple ways. $42 / y d$
Old example:
cost $C=7 L+\frac{48}{L} \quad$ " C is a function of L " $W=\frac{12}{L} \quad$ Area $=12$
leyth $L=\frac{12}{W} \quad " L$ is a function of W "

$$
\begin{aligned}
C & =7\left(\frac{12}{W}\right)+\frac{48}{12 / w} \\
& =\frac{84}{w}+4 w \quad \text { "C is a function of } W "
\end{aligned}
$$

Question: How are the derivatives $\frac{d C}{d L}, \frac{d L}{d w}, \frac{d C}{d w}$ related?
Analogy: Suppose Clemson scores $3 x$ as mach as Tennessee Suppose Tenn scores $4 x$ as much as USC.

Questim: How much more does Clemson score as USC?

Ans: $\frac{d \text { Clemson }}{d \text { USA }}=\frac{\text { d Clemson }}{d \text { Tenn }} \cdot \frac{d \text { Ten }}{d \text { USC }}$

$$
=3 \cdot \quad y=12
$$

The chain rule tells us how to compute the derivative of $f(g(x))$. For example, consider $\sin 2 x$.

If $f(x)=\sin x, \quad g(x)=2 x$, then $f(g(x))=\sin 2 x$

Mon $9 / 30$
Chain rube: Given $f(g(x))$,

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

$$
\frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}
$$

old rotation (Lagrange)
New notation (Leibnitz)
Exercises:

$$
\text { - }(\sin 2 x)^{\prime}=\frac{d}{d x}(\sin 2 x)
$$

write as $f(x)=\sin x \quad f^{\prime}(x)=\cos x$

$$
\begin{gathered}
g(x)=2 x \quad g^{\prime}(x)=2 \\
f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\cos 2 x \cdot 2=2 \cos 2 x
\end{gathered}
$$

$$
\cdot\left[(\cos x)^{3}\right]^{\prime}=\frac{d}{d x}\left[(\cos x)^{3}\right]
$$

write as $f(x)=x^{3} \quad f^{\prime}(x)=3 x^{2}$

$$
\begin{aligned}
& g(x)=\cos x \quad g^{\prime}(x)=-\sin x \\
& (f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=3(\cos x)^{2} \cdot(-\sin x)=-3(\cos x)^{2} \sin x . \\
& \cdot\left[\left(6 x^{3}+7 x\right)^{8}\right]^{\prime}=\frac{d}{d x}\left(6 x^{3}+7 x\right)^{8}
\end{aligned}
$$

Let's use both notations and compare/contrast.

Lagrange:

$$
\begin{array}{rlrl}
f(x) & =x^{8} & & f^{\prime}(x)=8 x^{7} \\
g(x) & =6 x^{3}+7 x & & g^{\prime}(x)=18 x^{2}+7 \\
(f(g(x)))^{\prime} & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =8\left(6 x^{3}+7 x\right)^{7} \cdot\left(18 x^{2}+7\right)
\end{array}
$$

Leibnitz:
let $y=u^{8}$, where $u=6 x^{3}+7 x$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =8 u^{7} \cdot\left(18 x^{2}+7\right) \\
& =8\left(6 x^{3}+7 x\right)^{7} \cdot\left(18 x^{2}+7\right)
\end{aligned}
$$

Ustul identities

$$
\begin{aligned}
& (\sin k x)^{\prime}=k \cos k x \\
& (\cos k x)^{\prime}=-k \sin k x
\end{aligned}
$$

Wed $10 / 2$
Impliat differentiation
what's the difference between defining a function "expliutly" us, "implicitly"?

- Functions defined explicitly

Examples: $f(x)=x^{2}$
$y(x)= \begin{cases}1 & x \geqslant 0 \\ 0 & x<0\end{cases}$

$$
y=\sin (2 x)+3 x
$$

- "Functions" defined implicitly

Examples: $\quad x^{2}+y^{2}=1$. This is a circle:
In this case, we can actually solve for y :
$y= \pm \sqrt{1-x^{2}}$, so it's actually 2 functions.

But frequently, we can't solve for y.
For example, consider the curve defined by $x y+x \sin y=3 x$

* Key point: Even for implicitly defined functions, we can still find the derivative, $\frac{d y}{d x}$!
Method: Differentiate both sides solve for $\frac{d y}{d x}$

$$
\begin{aligned}
& x y+x \sin y=3 x \\
& (x y)^{\prime}+(x \sin y)^{\prime}=(3 x)^{\prime} \\
& \left(1 \cdot y+x \cdot \frac{d y}{d x}\right)+\left(1 \cdot \sin y+x \cdot \cos y \cdot \frac{d y}{d x}\right)=3 \leftarrow\left\{\begin{array}{l}
x \text { is a variable, but } \\
y \text { is a function! }
\end{array}\right. \\
& (x+x \cos y) \frac{d y}{d x}+y+\sin y=3
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{3-y-\sin y}{x+x \cos y}
$$

Example: Find the equation of the line tangent to $x^{2}+x y-y^{3}=7$ at the point $\left(x_{0}, y_{0}\right)=(3,2)$

Note: This is not a function (fails vertical line test), so we prefer to write $\frac{d y}{d x}$ to $y^{\prime}(x)$.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}+x y-y^{3}\right)=\frac{d}{d x}(7) \\
& \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x y)-\frac{d}{d x}\left(y^{3}\right)=0 \\
& 2 x+y+x \frac{d y}{d x}-3 y^{2} \frac{d y}{d x}=0 \\
& 2 x+y=\left(3 y^{2}-x\right) \frac{d y}{d x} \\
& \frac{d y}{d x}=\left.\frac{2 x+y}{3 y^{2}-x} \Rightarrow \frac{d y}{d x}\right|_{(x, y)=(3,2)}=\frac{2 \cdot 3+2}{3 \cdot 2^{2}-3}=\frac{8}{9}
\end{aligned}
$$

Tangent line: $y-y_{0}=m\left(x-x_{0}\right) \Rightarrow y-2=\frac{8}{9}(x-3)$ $\begin{array}{ccc}\uparrow & \uparrow & \uparrow \\ 2 & 8 / 9 & 3\end{array}$

