Fri $10 / 4$
Exponential functions
We hear a lot that $e \approx 2.718281828 \ldots$ is a number that "comes up a lot in nature." But whit does that mean?

Motivating example:
Consider an investment that grows at a 100% rate

After yer. $P(1)=P_{0}\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{4}\right)$

$$
=P_{0}\left(1+\frac{1}{4}\right)^{4} \approx 2.441 P_{0}
$$

After 1 year: $P(1)=P_{0}\left(1+\frac{1}{365}\right)^{365}$

$$
\approx 2.7146 P_{0}
$$

\&In the limit, we say interest is compounded continuously.

After I year:

$$
P(1)=P_{0} \cdot \underbrace{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}_{\text {call this " } e^{\prime \prime}, \approx 2.718281828 \ldots}
$$

e was first discovered by John Napier in the early 1600^{3}.
It arose several other times in the 1600° in different con texts
In 1683, Jacob Bernoulli showed that $e<3$.
[Note that by our above argument, $e>2, e>2.25, e>2.441, e>2.7146, \ldots$]
Bernoulli: Define $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)$
Note that $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots+n x^{n-1}+x^{n}$
Plugging in $x=\frac{1}{n}:\left(1+\frac{1}{n}\right)^{n} \approx 1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots$

$$
\begin{aligned}
& \leqslant 1+1+\frac{1}{2!}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots \\
& =1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=3
\end{aligned}
$$

Similarly, we can define $e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$ wed 10/9
Derivative of e^{x} :

$$
\frac{d}{d x} e^{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x} \cdot \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

Sneaky little trick
 to evaluate this...

Substitute: Let $n=e^{h}-1 \Longleftrightarrow n+1=e^{h} \Longleftrightarrow \ln (n+1)=h$
Now, we have

$$
\begin{aligned}
& e^{x} \lim _{n \rightarrow 0} \frac{n}{\ln (n+1)} \cdot \frac{1 / n}{1 / n}=e^{x} \lim _{n \rightarrow 0} \frac{1}{\frac{1}{n} \ln (1+n)} \\
= & e^{x} \lim _{n \rightarrow 0} \frac{1}{\ln (1+n)^{1 / n}} \quad(\log \text { laws }) \\
= & e^{x} \lim _{n \rightarrow \infty} \frac{1}{\ln \left(1+\frac{1}{n}\right)^{n}} \quad \frac{1}{n} \rightarrow 0 \Leftrightarrow n \rightarrow \infty \\
= & e^{x} \frac{1}{\ln \left[\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}\right]} \quad \text { Swap } \lim _{n \rightarrow \infty} \text { with } \ln \\
= & e^{x} \frac{1}{\ln \left[e^{x}\right]}=e^{x} \cdot 1=e^{x}
\end{aligned}
$$

Thus, $\frac{d}{d x} e^{x}=e^{x}$
By the chain rule, $\frac{d}{d x}\left(e^{k x}\right)=k e^{k x}$

$$
\frac{d}{d x} e^{x^{2}}=e^{x^{2}} \cdot \frac{d}{d x}(2 x)=2 x e^{x^{2}}
$$

Derivatives of other exponential functions

Trick: $\frac{d}{d x}\left(2^{x}\right)=\frac{d}{d x}\left[\left(e^{\ln 2}\right)^{x}\right]=\frac{d}{d x}\left[e^{(\ln 2) x}\right] \quad \begin{aligned} & \text { think of } \\ & \ln 2=k \ldots\end{aligned}$

$$
=(\ln 2) e^{(\ln 2) x}=(\ln 2) 2^{x}
$$

Similarly, $\frac{d}{d x} b^{x}=(\ln b) b^{x}$
Derivatives of natural log: Use implicit differentiation
Suppose $y=\ln x$. Then $e^{y}=x$

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{y}\right)=\frac{d}{d x}(x) \\
& e^{y} \cdot \frac{d y}{d x}=1 \quad \Rightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}
\end{aligned}
$$

Thus, $\frac{d}{d x}(\ln x)=\frac{1}{x}$
Fri $10 / 11$
Related rates
Wee seen some optimization (mim \mid max $)$ problems, eg.,

- minimize cost, subject to...
- maximize area, subject to

In these, the process is the same: Compute $f^{\prime}(x)$, set $=0$, \sum_{1}^{1} solve.
Now, well study another type of word problem: "elated rates" The prows involves using the chain rule: $\frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}$

Example 1: A rock is dropped in a pond, and the ripple expands at a rate of $3 \mathrm{~m} / \mathrm{sec}$. How fast is the area increasing when the radius is $7 m$?

Given info: $\quad \frac{d r}{d t}=3 \mathrm{in} / \mathrm{sec}$
Want: $\left.\frac{d A}{d t}\right|_{r=7}$
Also, $A=\pi r^{2}$

Chain rule: $\quad \frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t} \quad \frac{d A}{d t}=2 \pi r$

$$
=2 \pi r \cdot 3=6 \pi r
$$

So $\left.\frac{d A}{d t}\right|_{r=7}=6 \pi(7)=42 \pi \frac{\mathrm{in}^{2}}{\mathrm{sec}}$

Example 2: A lo-ft ladder rests against a wall. If the base is pulled awry at a rate of $2 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder falling when the ladder is 6 ft from the wall?

Given info: $\frac{d x}{d t}=2 \mathrm{ft} / \mathrm{sec}$
Want $\left.\frac{d y}{d t}\right|_{x=6}$
Also, $x^{2}+y^{2}=100$

Note: When $x=6: 6^{2}+y^{2}=10^{2}$

$$
\Rightarrow y=\sqrt{100-36}=8
$$

There are often multiple ways to proceed on these types of problems.
Ore option: $\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x} 100$

$$
2 x+2 y \cdot \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x}{y} .
$$

Now plug into: $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$

$$
=\frac{-x}{y} \cdot 2=\frac{-6}{8} \cdot 2=-1.5 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

Another option: $\frac{d}{d t}\left(x^{2}+y^{2}\right)=\frac{d}{d t} 100$

$$
\begin{aligned}
& 2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=0 \\
& 2 \cdot 6 \cdot 2+2 \cdot 8 \cdot \frac{d y}{d t}=0 \Rightarrow 16 \frac{d y}{d t}=-24 \\
& \Rightarrow \frac{d y}{d t}=-1.5 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{aligned}
$$

Moral: There is often more than ore way to get the right answer.
Example 3: Sand falls from an overhead bm. It forms a sand pile with radius that is 3 times its height.
If it falls at a rate of $120 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the height changing when the pile is 10 ft high?

Given info:

$$
\begin{aligned}
& r=3 h \\
& V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(3 h)^{2} \cdot h=3 \pi h^{3} \\
& \frac{d V}{d t}=120 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Want: $\left.\frac{d h}{d t}\right|_{h=10}$
We can also see that $V=3 \pi h^{3} \Rightarrow \frac{d V}{d h}=9 \pi h^{2}$
Apply the chain rule to $\frac{d V}{d t}, \frac{d V}{d h}, \frac{d h}{d t}$:

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t} \\
& 120=9 \pi h^{2} \cdot \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{120}{9 \pi h^{2}} \\
&\left.\Rightarrow \frac{d h}{d t}\right|_{h=10}=\frac{120}{9 \pi \cdot 100}=\frac{12}{90 \pi} \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

