We to 10/16
Reveals: view studied differential calculus - derivative is rates of change.
Given a function
$$f(x)$$
, find its derivative, $f'(x)$.
Next, well do integral calculus, which is the apposite.
Given a rate $f'(x)$, find the "articlerivative" $f(x)$.
Big idea: Function $f(x)$ calculus which is the apposite.
Given a rate $f'(x)$, find the "articlerivative" $f(x)$.
Big idea: Function $f(x)$ calculus which is the opposite.
Motivating example: Consider a "their read trip, where the velocity yes
travel is the following:
Ouestion: How far did yes travel?
There are two ways to ensure.
 $(x + z) = (x - z)^{-1}$
 $(x + z)^{-1$

Properties of signed area:
()
$$\int_{a}^{b} f(x) dx = 0$$

(c) $\int_{b}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
(c) $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx + \int_{a}^{b} g(x) dx$
(c) $\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
(c) $\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$
(c) $\int_{a}^{c} k f(x) dx = k \int_{a}^{b} f(x) dx$
(c) $\int_{a}^{c} F(x) dx = -\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} F(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} F(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{c} f(x) dx + \int_{b}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$
(c) $\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx + \int$

Now, we'll need a limit definition for (signed) area under the curre. This is notivated by Archimedes limit definition of the area of a circle.

Regardless of which Riemann sum we choose,
Area =
$$\lim_{bx \to 0} \left(\sum_{j=1}^{c} area of i^{+1} b dx \right)$$

= $\lim_{bx \to 0} \left(\sum_{j=1}^{c} f(x_{i}^{*}) \cdot bx \right) := \int_{a}^{b} f(x) dx$
 $\int_{a}^{b} f(x) dx$
Whis compute this explicitly for $f(x) = x^{2} + 1$, i.e., $\int_{0}^{2} (x^{2} + 1) dx$.
First, we'll review "sigma notation":
 $\sum_{k=1}^{c} k = 1 + 2 + 3 + 4 + 5 + 6 = \sum_{j=1}^{c} 1$
 $\int_{a}^{b} \int_{a}^{b} dx + \sum_{k=1}^{c} b_{k}$ "break inpart sums"
 $\sum_{k=1}^{c} Ca_{k} = C\sum_{k=1}^{c} a_{k}$ "pull out constants"
Lumitries: $\sum_{k=1}^{c} (a + b_{k}) = \sum_{k=1}^{c} a_{k} + \sum_{k=1}^{c} b_{k}$ "pull out constants"
 $\sum_{k=1}^{c} k^{2} = 1 + 2 + 3 + \cdots + (n-1)^{2} + n^{2} = \frac{n(n+1)(2n+1)}{6}$
 $\sum_{k=1}^{c} k^{3} = 1 + 8 + 21 + \cdots + (n-1)^{3} + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$

$$\frac{R_{iemann sum example}}{R_{iemann sum example}}: \quad Compute \int_{0}^{1} (x^{2}+1) dx . \quad (et \quad \delta x = \frac{2}{n} = \frac{2}{n} .$$
Subintervals $[0, \frac{7}{n}], [\frac{7}{n}, \frac{4}{n}], ..., [\frac{2(n-\frac{1}{n})}{2}, \frac{2}{n}]$
Regist endpoints: $\frac{7}{n}, \frac{4}{n}, ..., \frac{34}{n}, ..., 2$
Area $= \sum_{i=1}^{n} f(\frac{x_{i}}{n}) \cdot \frac{2}{n}$
 $= \sum_{i=1}^{n} f(\frac{x_{i}}{n}) \cdot \frac{2}{n}$
 $= \sum_{i=1}^{n} f(\frac{x_{i}}{n}) \cdot \frac{2}{n} = \sum_{i=1}^{n} (\frac{8i^{2}}{n^{3}} + \frac{2}{n})$
 $= \sum_{i=1}^{n} \frac{8i^{2}}{n^{3}} + \sum_{i=1}^{n} \frac{2}{n}$
 $= \frac{8}{n^{3}} \sum_{i=1}^{n} i^{2} + \frac{2}{n} \sum_{i=1}^{n} 1$
 $= \frac{8}{n^{3}} \left[\frac{n(n+i)(2n+i)}{n^{3}} \right] + \frac{2}{n} \cdot \left[n \right]$
Now, take $\lim_{n \to \infty} \frac{8}{n} \cdot \frac{n(n+i)(2n+i)}{n^{3}} + \lim_{n \to \infty} 2$
 $= \frac{4}{3} \cdot 2 + 2 = \left[\frac{14}{3} \right]$

Wed 10/22
Area Function: Fix fix and a real number, a.
Define
$$A(x) = \int_{a}^{x} f(t) dt$$

= onen under the curve from a to x
 $a \leftarrow x \rightarrow$

This is the Fundamental theorem of calculus, Part]
If F is continuous on [a, 5] and differentiable on (a, 6),
then
$$\frac{1}{3x} \int_{a}^{x} F(t) dt = F(x)$$

We say that F(x) is an antidurivative of f(x) if F'(x)=f(x). Antiderivatives are not unique! Antiderivatives of fix = 2x include x2, x2+1, x2+2,... Fast: IF F(x), G(X) are antiderivatives of f(x), then F(x) - G(x) = C, for some constant. Why: (F-G)' = F'-G' = C-C = 0 =) F-G = C.Now, consider a function FOD. We know A(x) is an antiderivative (by FTC 1) Let F(x) be any other antidervative. $\int \frac{\text{Reall}; A(a) = 0}{1}$ Then F(x) = A(x) + C $\Rightarrow F(b) - F(a) = (A(b) + C) - (A(a) + C)$ $= A(b) = \int_{a}^{b} f(x) dx$ This is the Fundamental theorem of calculus, Part 2 If f is continuous on [a, 5] and F is any antiderivative of f, then $\int_{a}^{b} f(x) dx = F(b) - F(a)$