(1.) Hagin Sophia: See PPT slides for history and overview

Our goal is to calculate the weight of the dome.

Find a:

$$
\Rightarrow a=50 \cos 70 \approx 17.1
$$

So $R=52.5, \quad r=50, \quad a=17.1$
(2)

Find V_{1} :

$$
\begin{aligned}
V_{1} & =\int_{a}^{R} \pi(\text { radius })^{2} d y=\int_{a}^{R} \pi \sqrt{R^{2}-y^{2}} d y \\
& =\int_{a}^{R} \pi\left(R^{2}-y^{2}\right) d y=\left.\pi\left(R^{2} y-\frac{y^{3}}{3}\right)\right|_{a=17.1} ^{R=52.5} \\
& =\pi\left(R^{3}-\frac{R^{3}}{3}\right)-\pi\left(R^{2} a-\frac{a^{3}}{3}\right) \\
& =\pi\left[\frac{2}{3} R^{3}-R^{2} a+\frac{1}{3} a^{3}\right]=160233 \mathrm{ft}^{3}
\end{aligned}
$$

$$
V_{2}=\int_{a}^{r} \pi(\text { radius })^{2} d y=\int_{a}^{r} \pi \sqrt{r^{2}-y^{2}} d y \leftarrow \begin{aligned}
& \text { same as } V_{1} \\
& \text { bat replace }
\end{aligned}
$$

$$
o . e=\pi\left[\frac{2}{3} r^{3}-r^{2} a+\frac{1}{3} a^{3}\right] \approx 132733 \mathrm{ft}^{3}
$$

So $V_{1}-V_{2}=27500 \mathrm{ft}^{3}$
The concrete in the dome weighs $\approx 110 \mathrm{~B} / \mathrm{ft}^{3}$
\Rightarrow total weight is $\left(27500 \mathrm{ft}^{3}\right)\left(110 \mathrm{lb} / \mathrm{ft}^{3}\right)$

$$
=3,025,00013 \text {. }
$$

There are 40 supporting ribs $\Rightarrow \frac{3,025,000}{40}=75,625 \quad|\mathrm{lbs}|_{\text {rib }}$.
Let's calculate the outward force at each buttress wed 11/20

Basic trig: $\left|\vec{F}_{v}\right|=|\vec{F}| \cdot \cos 20 \approx 71,064 \mathrm{lb}$

$$
\left|F_{h}\right|=|\vec{F}| \cos 70 \approx 25,865 \mathrm{~b}
$$

Def:- Vertical cross-sections of a dome are called meridians

- Horizontal corss-sections of a dome are called hoops Compare the force (magnitude direction) of the dome on a hoop, at various heights.

(4)

The hoop stress is the outward force.

* First principle of structural architecture: Unix the shell can resist the "hoop stress", it will expand along the hoops: cracks will develop along meridians.
(2) Roman Pantheon: See PPT sides for history! overview.

Two key differences b/w Pantheon 9 Hagia Sophia:

1. The inner outer shell are spheres with different centers
2. The brick i mortar was mixed with pumice at the top to reduce hoop stress.

weill use the shell method

Recall: Vol of a shell

$$
\begin{aligned}
\text { Vol } 1 & =\int_{a}^{b} 2 \pi x\left[\sqrt{R^{2}-x^{2}}-\left(\sqrt{r^{2}-x^{2}}+D\right)\right] d x \quad \text { ut } u=R^{2}-x^{2} \\
& =\int_{a}^{b} 2 \pi x \sqrt{R^{2}-x^{2}} d x-\int_{a}^{b} 2 \pi x \sqrt{r^{2}-x^{2}} d x-\int_{a}^{b} 2 \pi x D d x d x \\
& =\int_{x=a}^{x=b}-\pi \sqrt{u} d u+\int_{x=a}^{x=b} \pi \sqrt{u} d u-\int_{a}^{b}(2 \pi D) x d x \\
& =-\left.\frac{2}{3} \pi u^{3 / 2}\right|_{x=a} ^{x=b}+\left.\frac{2}{3} \pi u^{3 / 2}\right|_{x=a} ^{x=b}-\left.\pi D x^{2}\right|_{a} ^{b} \\
& =-\left.\frac{2}{3} \pi\left(R^{2}-x^{2}\right)^{3 / 2}\right|_{a} ^{b}+\left.\frac{2}{3} \pi\left(r^{2}-x^{2}\right)^{3 / 2}\right|_{a} ^{b}-\pi D\left(b^{2}-a^{2}\right) \\
& =-656,875+984,818-198,694=129,299 \mathrm{ft}^{3}
\end{aligned}
$$

