$$
\text { Fri } 11 / 22 \text { - Mon } 11 / 26
$$

The shape of an ideal arch (see slides on Canuas)
What is an idea arch?
Three conditions: (1) The only load on the arch is its weight
(2) The only external support is at its base
(3) Gravitational forces on the arch ane balanced perfectly by its reaction to the compression that these forces generate.
Another answer, due to Robert Hooke (1671): "hanging chain, upside-down"
Imagine a weighted fishing line that has weights strung along it.

(2)

- Forcer must balance if the string is at rest At each weight:

$$
\overbrace{w_{2} \downarrow T_{3}}^{T_{2}} \sim \underset{-\left(T_{2}+w_{2}\right)}{w_{2} \Uparrow T_{2}} \Rightarrow T_{3}=T_{2}+w_{2}
$$

Thus, we get a system of equations that must hold:

$$
\left\{\begin{aligned}
& T_{1}+W_{1}=T_{2} \\
& T_{2}+W_{2}=T_{3} \\
& T_{3}+W_{3}=T_{4} \\
& \vdots \\
& T_{n}+W_{n}=T_{n+1} \quad \text {... which is not fun to solve. }
\end{aligned}\right.
$$

As usual, the "Calculus version" of this problem is less messy (later). If we turn a chain upside-dawn, we get an arch.

stability $\Rightarrow w_{1}+w_{2}+\cdots+w_{n}=V_{1}+V_{2}$

Safe theorem (Heyman, 1966): "As long as there is any polygonal path inside the arch such that the former balance, then the which is stable.

It tums out that the shape of an ideal arch, or hanging chari (i.e, take $\lim _{n \rightarrow \infty}$ in the previous examples) is a
hyperbolic cosine function, $A \cosh (B x)=A\left(\frac{e^{B x}+e^{-B_{x}}}{2}\right), \quad A B=1$.

Def: Hyperbolic cosine

Tres 11/27
Let's explore this further...
Polygonal approximations of functions. (Topic from the end of Calculus 2)
Motivating example: Let's approximate $f(x)=e^{x}$ at $x=0$.

- $0^{\text {th }}$ order apporimatim: $T_{0}(x)=1$ (y-intercept)

- $1^{\text {st }}$ order approximation: $T_{1}(x)=1+x$ (Wive dove a lot of there...)

- $2^{\text {nd }}$ order approximation:

$$
T_{2}(x)=1+x+\frac{1}{2} x^{2}
$$

And so on...

- $n^{\text {th }}$ order approximation: $T_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{1}$.

Taking the limit as $n \rightarrow \infty$ yields an infinite series:

$$
e^{x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{y}+\ldots
$$

How to find a_{n} ?
Note that $T_{n}(0)=a_{0}=e^{0}=1$

$$
\begin{array}{rll}
T_{n}^{\prime}(0)=a_{1} & =e^{0}=1 & \text { since } \frac{d}{d x} e^{x}=e^{x} \\
T_{n}^{\prime \prime}(0)=2 a_{2} & =e^{0}=1 & \text { since } \frac{d^{2}}{d x^{2}} e^{x}=e^{x} \\
T_{n}^{\prime \prime \prime}(0) & =G a_{3} & =e^{0}=1 \\
\vdots & \\
T_{n}^{(k)}(0)=k!a_{k} & =e^{0}=1
\end{array}
$$

Thus, the coefficient of x^{k} is $a_{k}=\frac{1}{k!}$
That is, $e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} x^{5}+\frac{1}{6!} x^{6}+\frac{1}{7!} x^{7}+\frac{1}{8!} x^{8}+\ldots$
Therefore: $e^{-x}=1-x+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}-\frac{1}{5!} x^{5}+\frac{1}{6!} x^{6}-\frac{1}{7!} x^{7}+\frac{1}{8!} x^{8}+\cdots$
Add these! $\frac{e^{x}+e^{-x}}{2}=1+\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}=\cosh x$
Subtract thane. $\frac{e^{x}-e^{-x}}{2}=x+\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\frac{1}{7!} x^{7}=\sinh x$

Remarks $\cdot e^{x}=\cosh x+\sinh x$

- $\frac{d}{d x}(\sinh x)=\cosh x, \quad \frac{d}{d x}(\cosh x)=\sinh x$
- If $i=\sqrt{-1}$, then $i^{2}=-1, i^{3}=-i, i^{4}=1, i^{5}=i, \ldots$

$$
\begin{aligned}
& e^{i x}=1+i x-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}-\frac{i x^{7}}{7!}+\frac{x^{8}}{8!}+/ \ldots \\
& \frac{e^{-i x}=1-i x-\frac{x^{2}}{2!}+\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}+\frac{i x^{7}}{7!}+\frac{x^{8}}{8!}+/ \ldots}{\frac{e^{i x}+e^{-i x}}{2}=1-\frac{x^{2}}{2!}} \begin{array}{l}
\text { + } \frac{x^{4}}{4!} \\
\frac{e^{i x}-e^{-i x}}{2 i}=x
\end{array} \frac{-\frac{x^{6}}{6!}}{}+\frac{x^{8}}{8!}+/ \ldots=\cos x \\
& 3! \\
& +\frac{x^{5}}{5!} \quad-\frac{x^{7}}{7!}+1 / \cdots=\sin x
\end{aligned}
$$

Remarks: $\cdot e^{i x}=\cos x+i \sin x$

$$
\begin{aligned}
& \cdot e^{i \pi}=\cos \pi+i \sin \pi \\
& \Rightarrow e^{i \pi}=-1
\end{aligned}
$$

Mon 12/2

Consider an ideal arch.
Let $C(x)=$ compression force at x
$\theta(x)=$ angle at x
$y(x)=$ graph of the function of the arch.

6

* Need to balance horizontal i vertical fores.

Balance horizontal forces

$$
\begin{array}{ll}
C(x+\Delta x) \cdot \cos \theta(x+\Delta x)-C(x) \cos \theta(x) & \approx 0 \\
\lim _{\Delta x \rightarrow 0} \frac{C(x+\Delta x) \cdot \cos \theta(x+\Delta x)-C(x) \cos \theta(x)}{\Delta x} \approx 0 & \text { tare limit of both sides } \\
\int_{-b}^{x} \frac{d}{d x} C(x) \cos \theta(x) d x=\int_{-b}^{x} 0 d x & \text { integrale both sides } \\
(\nmid x) C(x) \cos \theta(x)=C_{0} & C_{0}=\text { unknown constant }
\end{array}
$$

Remark: If we plug in $x=0$, we get $C(0) \underbrace{\cos \theta(0)}_{=1}=C_{0}$
Thus $C_{0}=C(0)=$ compression force at top of arch.
Balance vertical forces

$$
\begin{aligned}
C(x+\Delta x) \sin \theta(x+\Delta x)-C(x) \sin \theta(x) & \approx-w \Delta \sqrt{\Delta s} \rightarrow \sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \cdot \sqrt{\frac{(\Delta x)^{2}}{(\Delta x)^{2}}} \\
& =\sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} \cdot \Delta x \\
& =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \text { as } \Delta x \rightarrow 0
\end{aligned}
$$

$$
\lim _{\Delta x \rightarrow 0} \frac{C(x+\Delta x) \sin \theta(x+\Delta x)-C(x) \sin \theta(x)}{\Delta x} \approx-w \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$ both sides

$$
\int_{-b}^{x} \frac{d}{d x} C(x) \sin \theta(x) d x=-w \int_{-b}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

($\$ *)$

$$
C(x) \sin \theta(x)=-w \underbrace{\int_{-b}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x}_{\text {length of arch from -b to } x}
$$

Now, what do we do with (A) and $(A A)$?
Consider $\tan \theta(x)$: there are two ways to compute it.
(1)

$$
\tan \theta(x)=\frac{d y}{d x}
$$

$$
\text { (2) } \begin{aligned}
\frac{(*)}{(*)} & =\frac{C(x) \sin \theta(x)}{C(x) \cos \theta(x)} \\
& =-\frac{w}{C_{0}} \int_{-b}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Thus, the function $y(x)$ that describes the arch satisfies

$$
\frac{d y}{d x}=-\frac{w}{C_{0}} \int_{-6}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

This is an example of a differential equation: an equation that defines $y(x)$ implicitly, but not explicitly.
wed $12 / 4 \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left[-\frac{w}{C_{0}} \int_{-b}^{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x\right]$
(*) $\frac{d^{2} y}{d x^{2}}=-\frac{w}{C_{0}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$ by Fund. Thu. Talc.

Aside: Differential equations come up in science i engineeshy.
Ex: "Rate of chang of an investment is proportional to its value"

$$
y^{\prime}=k \quad y
$$

e-gy 5% interest rate: $\quad y^{\prime}=0,05 y$
This his soln $y(t)=C e^{0,05 t}$ "exponential growth"

Another example:

"Rate of change of temp. of coffee is proportional to difference blew soon temp"

$$
\begin{gathered}
T^{\prime}=k \\
T^{\prime}=k(72-T) \text { has sols } T(t)=72+C e^{-k t}
\end{gathered}
$$

Bach to solving (*).
Claim: $y(x)=-\frac{C_{0}}{w} \cosh \left(\frac{\omega}{C_{0}} x\right)+D$ works.
Recall: $\cosh h x=\frac{e^{k x}+e^{-k x}}{2}, \quad \sinh k x=\frac{e^{k x}-e^{-k x}}{2}$

$$
(\cosh k x)^{2}=\frac{1}{4}\left(e^{2 k x}+2+e^{-2 k x}\right), \quad(\sinh k x)^{2}=\frac{1}{4}\left(e^{2 k x}-2+e^{-2 k x}\right)
$$

$$
(\cosh k x)^{2}-(\sinh k x)^{2}=1
$$

Also $\frac{d}{d x} \cosh k x=\sinh k x$ and $\frac{d}{d x} \sinh k x=\cosh k x$
So $\frac{d y}{d x}=-\sinh \left(\frac{\omega}{c_{0}} x\right)$
$\frac{d^{2} y}{d x^{2}}=-\frac{w}{c_{0}} \cosh \left(\frac{w}{c_{0}} x\right) \longleftarrow$ LHS (need to show this is $=$ RHS).
RUS:

$$
\begin{aligned}
& -\frac{w}{c_{0}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\frac{-w}{c_{0}} \sqrt{1+\left(\sinh \frac{w}{c_{0}} x\right)^{2}}=\frac{-w}{c_{0}} \sqrt{\left(\cos \frac{w}{c_{0}} x\right)^{2}} \\
& =-\frac{w}{c_{0}} \cosh \left(\frac{w}{c_{0}} x\right)
\end{aligned}
$$

Next: If h is the max height of an arch, then

$$
y(0)=-\frac{w}{c_{0}} \underbrace{\cosh 0}_{=1}+D=-\frac{w}{c_{0}}+D=h \Rightarrow D=h+\frac{w}{c_{0}}
$$

Thus the final solution is $y(x)=-\frac{C_{0}}{\omega} \cosh \left(\frac{\omega}{C_{0}} x\right)+\left(h+\frac{\omega}{C_{0}}\right)$

In general, the shape of an idea arch is $y(x)=A \cosh \left(\frac{x}{A}\right)+D$.
Now, bade to the St. Louis Arch... (see Canvas slides).

