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Theshapeofanideala see slides on Canvas

wht is an ideal arch

Threeconditions The only load on the arch is its weight
Theonly external support is at its base
Gravitational forces on the arch are balanced

perfectly by its reaction to the compression thatthese
forces generate

Another answer dueto Robert Hooke 1671 hanging chain upsidedown

Imagine a weightlessfishing line that has weights strung along it
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Forces must balance if the string is at rest

At each weight
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Thus we get a system of equations that must hold
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As usual the Calculus version of this problem is lessmessy later

If we turn a chain upsidedown we get an arch
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m Heyman 19661 As long as there is any polygonal

path inside the arch such that the forces balance then the
arch is stable

It turns out that the shape of an ideal arch or hanging chari

i.e the haling in the previous examples is a

hyberboliccosirefunction Acosh Bx A eB tze AB

Def Hyperbolic Cosme Hyperbolic Sire
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let's explore this further
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Motivating ht's approximate fan ex at x O
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we've done a lot of there



2nd order approximation
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And so on

nth order approximation Tn x _aotqxtaz.it tax

Taking the limit as nax yields an infinite series
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How to find an
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Remains ex cosh x t Sinh x

dd Sinh x coshx Kosh x sinhx
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Consider an ideal arch

let compression fraatx
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Chtox Sinotxtax
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Need to balance horizontal in verticalforces

3alancehorizontal forces

Xxix cos tax CCD cosotx 0

im CCxtcsxl.GS Y Cx sON O the limit of bothsidesO DX

d
dj C x cosoCx dx 0 dx integrate both sides
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A Gx cosOtx Co co unknownconstant

Remark If we play in x o we get C o coset Co

Thus Co O compression force at top of arch
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ixmqclxtoxlsinotxtxcxshotxz wffdd.gg take limit o
both sides
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length ofarch from b to

Now what do we do with and 6th
Consider tanOtx there are two ways to compute it
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tan out If Eff Ft dx
Thus the function y that describesthe arch satisfies
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This is an example of a differentalegration an equationthat defines

yal implicitly but not explicitly
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Aside Differential equations come up in science4 engineering

EE Rateofchange of an investment is proportioned to its value

y k y

e g 5 interest rate y 0.05g

This has soin yl Ceo05T exponential growth µ
Anotherexample

Rateofchangeof temp of coffee is proportional to differencebw roomtemp
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osolvingXt.CLainyCx Cowcosh EoXtDW works

Read coshhex ek Ek sinh et
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Goshkxt sinhk.DE I
Also coshhex Sinh lex and sinkkx cosh kx

So off Sinh Ex
dd Cosh Ex LHS need to show this is RHS
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Next If h is the nay heightof an arch they

y6 EoCoste D I D h D hth

Thus the final solution is ylx Ewcoshf x tfht

In general the shape f an idealarch is y x Acosh t D


