Read Chapter 5 of Visual Group Theory, or Chapter 6 of IBL Abstract Algebra. Then write up solutions to the following exercises.

1. Carry out the following steps for the groups A_{4} and Q_{8}, whose Cayley graphs are shown below.

(a) Find the orbit of each element.
(b) Draw the orbit graph of the group.
2. Show algebraically that if $g^{2}=e$ for every element of a group G, then G must be abelian.
3. Compute the product of the following permutations. Your answer for each should be a single permutation written in cycle notation as a product of disjoint cycles.
(a) $(132)(1254)(153)$ in S_{5};
(b) (15) (1246)(154263) in S_{6}.
4. Write out all $4!=24$ permutations in S_{4} in cycle notation as a product of disjoint cycles. Additionally, write each as a product of transpositions, and decide if they are even or odd. Which of these permutations are also in A_{4} ?
5. (a) The group S_{3} can be generated by the transpositions (12) and (2 3). In fact, it has the following presentation

$$
S_{3}=\left\langle a, b \mid a^{2}=e, b^{2}=e,(a b)^{3}=e\right\rangle,
$$

where one can take $a=\left(\begin{array}{l}1\end{array}\right)$ and $b=(23)$. Make a Cayley diagram for S_{3} using this generating set.
(b) Make a Cayley diagram for the group generated by the permutations $a=(12)$ and $c=(34)$, and write down a group presentation for this.
(c) The group S_{4} can be generated by the transpositions (12), (2 3), and (3 4). Make a Cayley diagram for S_{4} using this generating set. This can be laid out on a polytope called a permutahedron, which is a truncated octahedron shown below. Make a Cayley graph by labeling the vertices on the unlabeled permutahedron with the 24 permutations of S_{4} in cycle notation, and color the edges appropriately. Let the vertex at the top denote the identity permutation.

(d) Write down a group presentation for S_{4} using the generators a, b, c as defined in Parts (a) and (b).
6. The Cayley diagram for A_{4} shown above labels the elements with letters instead of permutations:

$$
A_{4}=\left\{e, a, a^{2}, b, b^{2}, c, c^{2}, d, d^{2}, x, y, z\right\} .
$$

Redraw this Cayley diagram but label the nodes with the 12 even permutations from the previous problem. That is, you need to determine which permutation corresponds to a, which to b, and so on. [Hint: There are many possible ways to do this. If you let a be any one of the permutations of order 3 , and let x be any one of the permutations of order 2 , then you will be able to determine the remaining elements.]

