Read Chapter 6 of Visual Group Theory, or Chapters 4.1, 5.4, 5.5, 7 of IBL Abstract Algebra, and then write up solutions to the following exercises.

1. A Cayley diagram and multiplication table for the dihedral group D_{4} are shown below.

Section 2 of the class lecture notes describes two algorithms for expressing a group G of order n as a set of permutations in S_{n}. One algorithm uses the Cayley diagram and the other uses the multiplication table. In this problem, you will explore this a bit further.
(a) Label the vertices of the Cayley diagram from the set $\{1, \ldots, 8\}$ and use this to construct a permutation group isomorphic to D_{4}, and sitting inside S_{8}.
(b) Label the entries of the multiplication table from the set $\{1, \ldots, 8\}$ and use this to construct a permutation group isomorphic to D_{4}, and sitting inside S_{8}.
(c) Are the two groups you got in Parts (a) and (b) the same? (The answer will depend on your choice of labeling.) If "yes", then repeat Part (a) with a different labeling to yield a different group. If "no", then repeat Part (a) with a different labeling to yield the group you got in Part (b).
2. Find all subgroups of the following groups, and arrange them in a Hasse diagram, or subgroup lattice. Moreover, label each edge between $K \leq H$ with the index, $[H: K]$.
(a) $C_{23}=\left\langle r \mid r^{23}=1\right\rangle$;
(b) $C_{24}=\left\langle r \mid r^{24}=1\right\rangle$;
(c) $\mathbb{Z}_{3} \times \mathbb{Z}_{3}=\{(a, b) \mid a, b \in\{0,1,2\}\}$;
(d) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(a, b, c) \mid a, b, c \in\{0,1\}\}$; (Tip: it's notationally easier to write elements as binary strings, e.g., $a b c$ instead of (a, b, c));
(e) $S_{3}=\{e,(12),(23),(13),(123),(132)\}$;
(f) $A_{4}=\{e,(123),(132),(124),(142),(134),(143),(234),(243),(12)(34),(13)(24),(14)(23)\}$;
(g) $Q_{8}=\left\langle i, j, k \mid i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle$.
3. For each subgroup H of S_{4} described below, write out all of its elements and determine what well-known group it is isomorphic to.
(a) $H=\langle(12),(34)\rangle$;
(b) $H=\langle(12)(34),(13)(24)\rangle$;
(c) $H=\langle(12),(23)\rangle$;
(d) $H=\langle(12),(1324)\rangle$;
(e) $H=\langle(123),(234)\rangle$.
4. Prove the following, algebraically (that is, do not refer to Cayley diagrams):
(a) If \mathcal{H} is a collection of subgroups of G, then $\bigcap_{H_{\alpha} \in \mathcal{H}} H_{\alpha}$ is a subgroup of G.
(b) For any (possibly infinite) subset $S \subseteq G$, the subgroup generated by S is defined as

$$
\langle S\rangle:=\left\{s_{1}^{e_{1}} s_{2}^{e_{2}} \cdots s_{k}^{e_{k}} \mid s_{i} \in S, e_{i} \in\{-1,1\}\right\}
$$

That is, $\langle S\rangle$ consists of all finite "words" that can be written using the elements in S and their inverses. Note that the s_{i} 's need not be distinct. Prove that

$$
\langle S\rangle=\bigcap_{S \subseteq H_{\alpha} \leq G} H_{\alpha},
$$

where the intersection is taken over all subgroups of G that contain S. [Hint: To prove that $A=B$, you need to show that that $A \subseteq B$ and $B \subseteq A$.]
5. For a subgroup $H \leq G$ and element $x \in G$, the set $x H:=\{x h \mid h \in H\}$ is a left coset of H.
(a) Prove that if $x \in H$, then $x H=H$. What is the interpretation of this statement in terms of the Cayley diagram?
(b) Prove that if $b \in a H$, then $a H=b H$.
(c) Show that for any $x \in G$, the map

$$
\varphi: H \longrightarrow x H, \quad \varphi: h \longmapsto x h
$$

is a bijection. Conclude that all left cosets of H have the same size.
(d) Conclude that G is partitioned by the left cosets of H, all of which are equal size.
6. A subgroup H of G is normal if $x H=H x$ for all $x \in G$. Prove that if $[G: H]=2$, then H is a normal subgroup of G. [Hint: Use the results of the previous problem.]

