Read Chapter 6 of *Visual Group Theory*, or Chapters 4.1, 5.4, 5.5, 7 of *IBL Abstract Algebra*, and then write up solutions to the following exercises.

1. A Cayley diagram and multiplication table for the dihedral group  $D_4$  are shown below.



|        | e      | r      | $r^2$  | $r^3$  | f      | rf     | $r^2f$ | $r^3f$ |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| e      | e      | r      | $r^2$  | $r^3$  | f      | rf     | $r^2f$ | $r^3f$ |
| r      | r      | $r^2$  | $r^3$  | e      | rf     | $r^2f$ | $r^3f$ | f      |
| $r^2$  | $r^2$  | $r^3$  | e      | r      | $r^2f$ | $r^3f$ | f      | rf     |
| $r^3$  | $r^3$  | e      | r      | $r^2$  | $r^3f$ | f      | rf     | $r^2f$ |
| f      | f      | $r^3f$ | $r^2f$ | rf     | e      | $r^3$  | $r^2$  | r      |
| rf     | rf     | f      | $r^3f$ | $r^2f$ | r      | e      | $r^3$  | $r^2$  |
| $r^2f$ | $r^2f$ | rf     | f      | $r^3f$ | $r^2$  | r      | e      | $r^3$  |
| $r^3f$ | $r^3f$ | $r^2f$ | rf     | f      | $r^3$  | $r^2$  | r      | e      |

Section 2 of the class lecture notes describes two algorithms for expressing a group G of order n as a set of permutations in  $S_n$ . One algorithm uses the Cayley diagram and the other uses the multiplication table. In this problem, you will explore this a bit further.

- (a) Label the vertices of the Cayley diagram from the set  $\{1, ..., 8\}$  and use this to construct a permutation group isomorphic to  $D_4$ , and sitting inside  $S_8$ .
- (b) Label the entries of the multiplication table from the set  $\{1, ..., 8\}$  and use this to construct a permutation group isomorphic to  $D_4$ , and sitting inside  $S_8$ .
- (c) Are the two groups you got in Parts (a) and (b) the same? (The answer will depend on your choice of labeling.) If "yes", then repeat Part (a) with a different labeling to yield a different group. If "no", then repeat Part (a) with a different labeling to yield the group you got in Part (b).
- 2. Find all subgroups of the following groups, and arrange them in a Hasse diagram, or subgroup lattice. Moreover, label each edge between  $K \leq H$  with the index, [H:K].
  - (a)  $C_{23} = \langle r \mid r^{23} = 1 \rangle;$
  - (b)  $C_{24} = \langle r \mid r^{24} = 1 \rangle;$
  - (c)  $\mathbb{Z}_3 \times \mathbb{Z}_3 = \{(a,b) \mid a,b \in \{0,1,2\}\};$
  - (d)  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(a, b, c) \mid a, b, c \in \{0, 1\}\}; (Tip: it's notationally easier to write elements as binary strings, e.g., abc instead of <math>(a, b, c)$ ;
  - (e)  $S_3 = \{e, (12), (23), (13), (123), (132)\};$
  - $(f) \ \ A_4 = \{e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\};$
  - (g)  $Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = ijk = -1 \rangle$ .

- 3. For each subgroup H of  $S_4$  described below, write out all of its elements and determine what well-known group it is isomorphic to.
  - (a)  $H = \langle (12), (34) \rangle;$
  - (b)  $H = \langle (12)(34), (13)(24) \rangle;$
  - (c)  $H = \langle (12), (23) \rangle;$
  - (d)  $H = \langle (12), (1324) \rangle;$
  - (e)  $H = \langle (123), (234) \rangle$ .
- 4. Prove the following, algebraically (that is, do not refer to Cayley diagrams):
  - (a) If  $\mathcal{H}$  is a collection of subgroups of G, then  $\bigcap_{H_{\alpha} \in \mathcal{H}} H_{\alpha}$  is a subgroup of G.
  - (b) For any (possibly infinite) subset  $S \subseteq G$ , the subgroup generated by S is defined as

$$\langle S \rangle := \{ s_1^{e_1} s_2^{e_2} \cdots s_k^{e_k} \mid s_i \in S, \ e_i \in \{-1, 1\} \}.$$

That is,  $\langle S \rangle$  consists of all finite "words" that can be written using the elements in S and their inverses. Note that the  $s_i$ 's need not be distinct. Prove that

$$\langle S \rangle = \bigcap_{S \subseteq H_{\alpha} \le G} H_{\alpha} \,,$$

where the intersection is taken over all subgroups of G that contain S. [Hint: To prove that A = B, you need to show that that  $A \subseteq B$  and  $B \subseteq A$ .]

- 5. For a subgroup  $H \leq G$  and element  $x \in G$ , the set  $xH := \{xh \mid h \in H\}$  is a *left coset* of H.
  - (a) Prove that if  $x \in H$ , then xH = H. What is the interpretation of this statement in terms of the Cayley diagram?
  - (b) Prove that if  $b \in aH$ , then aH = bH.
  - (c) Show that for any  $x \in G$ , the map

$$\varphi \colon H \longrightarrow xH$$
,  $\varphi \colon h \longmapsto xh$ 

is a bijection. Conclude that all left cosets of H have the same size.

- (d) Conclude that G is partitioned by the left cosets of H, all of which are equal size.
- 6. A subgroup H of G is normal if xH = Hx for all  $x \in G$ . Prove that if [G : H] = 2, then H is a normal subgroup of G. [Hint: Use the results of the previous problem.]