Read Chapter 6 of Visual Group Theory, or Chapters 7.3, 8.1 of IBL Abstract Algebra, and then write up solutions to the following exercises.

1. Draw the subgroup lattice of the alternating group $A_{4}=\langle(123),(12)(34)\rangle$. Then carry out the following steps for two of its subgroups, $H=\langle(123)\rangle$ and $K=\langle(12)(34)\rangle$. When writing a coset, list all of its elements.
(a) Write $A_{4}$ as a disjoint union of the subgroup's left cosets.
(b) Write $A_{4}$ as a disjoint union of the subgroup's right cosets.
(c) Determine all conjugates of the subgroup, and whether it is normal in $A_{4}$.
2. The center of a group $G$ is the set

$$
Z(G)=\{z \in G \mid g z=z g, \forall g \in G\}=\left\{z \in G \mid g z g^{-1}=z, \forall g \in G\right\}
$$

(a) Prove that $Z(G)$ is a subgroup of $G$, and that it is normal in $G$.
(b) Compute the center of the following groups: $C_{6}, D_{4}, D_{5}, Q_{8}, A_{4}, S_{4}$, and $D_{4} \times Q_{8}$.
3. The subgroup lattice of $D_{4}$ is shown below:


For each of the 10 subgroups of $D_{4}$, find all of its conjugates, and determine whether it is normal in $D_{4}$. Fully justify your answers.
4. Consider a chain of subgroups $K \leq H \leq G$.
(a) Prove or disprove: If $K \unlhd H \unlhd G$, then $K \unlhd G$.
(b) Prove or disprove: If $K \unlhd G$, then $K \unlhd H$.
5. Let $H$ be a subgroup of $G$. Given two fixed elements $a, b \in G$, define the sets

$$
a H b H=\left\{a h_{1} b h_{2} \mid h_{1}, h_{2} \in H\right\} \quad \text { and } \quad a b H=\{a b h \mid h \in H\} .
$$

Prove that if $H \unlhd G$, then $a H b H=a b H$.
6. Prove that $A \times\left\{e_{B}\right\}$ is a normal subgroup of $A \times B$, where $e_{B}$ is the identity element of $B$. That is, show first that it is a subgroup, and then that it is normal.

