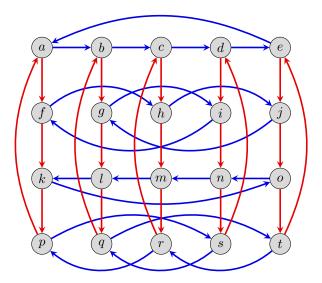
Read Chapter 7 of Visual Group Theory, or Chapter 8 of IBL Abstract Algebra, and then write up solutions to the following exercises.

1. Let G be the group whose Cayley diagram is shown below, and suppose e is the identity element. Consider the subgroups $A = \langle a \rangle = \{a, b, c, d, e\}$ and $J = \langle j \rangle = \{e, j, o, t\}$.



Carry out the following steps for both of these subgroups. List the cosets element-wise.

- (a) Write G as a disjoint union of the subgroup's left cosets.
- (b) Write G as a disjoint union of the subgroup's right cosets.
- (c) Compute the normalizer of the subgroup.
- (d) Attempt the quotient process, by shrinking the left cosets into individual nodes. The the resulting diagram and determine whether it is a valid Cayley diagram, and if so, which familiar group the quotient is isomorphic to.
- (e) Find all conjugates of the subgroup.
- 2. Let H be a subgroup of an abelian group G. Prove that H and G/H are both abelian.
- 3. All of the following statements are *false*. For each one, exhibit an explicit counterexample, and justify your reasoning. Assume that each $H_i \leq G_i$ for i = 1, 2.
 - (a) If H and G/H is abelian, then G is abelian.
 - (b) If every proper subgroup H of a group G is cyclic, then G is cyclic.
 - (c) If $G_1 \cong G_2$ and $H_1 \cong H_2$, then $G_1/H_1 \cong G_2/H_2$.
 - (d) If $G_1 \cong G_2$ and $G_1/H_1 \cong G_2/H_2$, then $H_1 \cong H_2$.
 - (e) If $H_1 \cong H_2$ and $G_1/H_1 \cong G_2/H_2$, then $G_1 \cong G_2$.

- 4. Prove the following "subgroup criterion", which can be very useful when trying to show that a subset is indeed a subgroup: A nonempty subset H of a group G is a subgroup if and only if $xy^{-1} \in H$ holds for all $x, y \in H$.
- 5. Let A be a subset of a group G. The *centralizer* of A, denoted $C_G(A)$, is the set of all elements that commute with everything in A:

$$C_G(A) = \{g \in G \mid ga = ag, \forall a \in A\}.$$

If $A = \{a\}$, then we denote the centralizer as $C_G(a)$.

- (a) Prove that $C_G(A)$ is a subgroup of G.
- (b) For D_4 , and Q_8 , compute the centralizers of each element.
- (c) Compute the centralizers of the following elements in S_4 : e, (12), (123), (1234), and (12)(34).
- (d) If A is a subgroup of G, prove that $C_G(A) \leq N_G(A)$.
- 6. Recall that for any group G, conjugacy is an equivalence relation on G, and the *conjugacy* class of an element $x \in G$ is $cl_G(x) = \{gxg^{-1} \mid g \in G\}$.
 - (a) Partition the following groups into conjugacy classes:

(i) \mathbb{Z}_4 ;	(iv) Q_8 ;
(ii) $D_5;$	(v) $S_4;$
(iii) D_8 ;	(vi) A_4 .

(b) For each of the following elements $\sigma \in S_4$: e, (12), (123), (1234), and (12)(34), compare the size of its centralizer $C_{S_4}(\sigma)$ to the size of its conjugacy class, $cl_{S_4}(\sigma)$. What do you notice about the product of these two numbers?