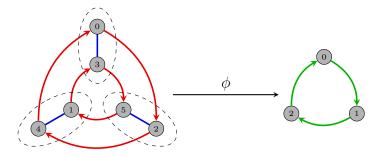
Read Chapters 8.1–3 of Visual Group Theory, or Chapters 4.2, 5.6, 8.1 of IBL Abstract Algebra, and then write up solutions to the following exercises.

- 1. Do the following steps for each mapping $\phi: G \to H$ listed below.
 - (i) Find ker $\phi := \{g \in G \mid \phi(g) = e\}$ and im $\phi = \phi(G) = \{\phi(g) \mid g \in G\}$.
 - (ii) Draw Cayley diagrams of the domain and codomain, and arrange them so one can "visually see" the cosets of ker ϕ in G. Draw dotted lines around these cosets.
 - (iii) Is the quotient $G/\ker\phi$ a group? If so, what is it isomorphic to?
 - (iv) Is ϕ a homomorphism? If no, explain what is going wrong.

Here is an example of Step (iii) for the map $\phi \colon \mathbb{Z}_6 \to \mathbb{Z}_3$, defined by $\phi(n) = n \pmod{3}$.



Now, do steps (i)–(iv) for the following maps.

- (a) The map $\phi \colon \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(n) = 4n$.
- (b) The map $\phi: D_4 \to \mathbb{Z}_4$ defined by $\phi(r^k f) = k$.
- (c) The map $\phi: D_4 \to \mathbb{Z}_4$ defined by $\phi(r^k f) = 2k$.
- (d) The map $\phi \colon \mathbb{Z}_4 \to D_4$ defined by $\phi(k) = r^k$.
- (e) The map $\phi: D_4 \to V_4$ defined by $\phi(r) = h$ and $\phi(f) = v$.
- 2. Prove that $A \times B \cong B \times A$.
- 3. For each part below, list *all* homomorphisms with the given domain and codomain. It suffices to write down the image of the generators, but you must explain why the map exists.
 - (a) Domain \mathbb{Z}_{15} and codomain \mathbb{Z}_4 .
 - (b) Domain \mathbb{Z}_{412} and codomain \mathbb{Z}_{440} .
 - (c) Domain and codomain both \mathbb{Z}_4 .
 - (d) Domain C_4 and codomain V_4 .
 - (e) Domain and codomain both V_4 .

- 4. Show that there is no embedding $\phi \colon \mathbb{Z}_n \hookrightarrow \mathbb{Z}$.
- 5. Let $H \leq G$, and fix $x \in G$. Recall that we showed in class that xHx^{-1} is always a subgroup of G.
 - (a) Prove additionally that $xHx^{-1} \cong H$. [*Hint*: Define a mapping from H to xHx^{-1} and prove that it is a homomorphism, one-to-one, and onto.]
 - (b) Use Part (a) to show that |xy| = |yx| for any $x, y \in G$.
- 6. Let $\phi: G \to H$ be a homomorphism, and $N \leq H$.
 - (i) Show that the set $\phi^{-1}(N) := \{g \in G \mid \phi(g) \in N\}$ is a subgroup of G.
 - (ii) Show that $\phi^{-1}(N)$ is a normal subgroup of G.
 - (iii) Show by example that if $M \leq G$, then $\phi(M)$ need not be a normal subgroup of H.