Read Chapters 8.4–5 of *Visual Group Theory*, Chapter 9.2 of *IBL Abstract Algebra*, or Chapters 10.3 and 12.1 of *AATA*. Then write up solutions to the following exercises.

- 1. Let $(\mathbb{Q}, +)$ be the group of rational numbers under addition, (\mathbb{Q}^*, \cdot) the group of non-zero rational numbers under multiplication, and (\mathbb{Q}^+, \cdot) the group of positive rational numbers under multiplication.
 - (a) Show that $(\mathbb{Q}^*, \cdot) \cong (\mathbb{Q}^+, \cdot) \times C_2$. [Hint: Recall that $C_2 = \{e^{0\pi i}, e^{\pi i}\} = \{1, -1\}$.]
 - (b) Describe the quotient groups $(\mathbb{Q}, +)/\langle -1 \rangle$ and $(\mathbb{Q}^*, \cdot)/\langle -1 \rangle$. In particular, what do the elements (cosets) look like?
 - (c) Use the Fundamental Homomorphism Theorem to prove that $(\mathbb{Q}^*, \cdot)/\langle -1 \rangle \cong (\mathbb{Q}^+, \cdot)$.
- 2. For Parts (a)–(d), a group G is given together with a normal subgroup H. Illustrate the embedding $\phi \colon H \to G$, and the quotient map $q \colon G \to G/H$, chained together so that $\operatorname{im}(\phi) = \ker(q)$. An example for $G = \mathbb{Z}_6$ and $H = \mathbb{Z}_2$ is shown below:

- (a) $G = \mathbb{Z}_6, H = \mathbb{Z}_3,$
- (b) $G = D_3, H = C_3,$
- (c) $G = A_4, H = V_4,$
- (d) $G = S_n$, $H = A_n$ [don't draw the actual Cayley graphs for this one, just the maps].

Now, answer each of the following questions about each of your answers to Parts (a)–(d).

- (e) What map θ into H would satisfy the equation im $\theta = \ker \phi$? Choose one with the smallest possible domain.
- (f) What map θ' from G/H would satisfy the equation $\operatorname{im}(q) = \ker(\theta')$? Choose one with the smallest possible codomain.
- (g) Add the two maps θ and θ' to your illustration.
- (h) The new chain of four homomorphisms is called a *short exact sequence*. It is one way to use homomorphisms to illustrate quotients, and it shows a connection betwen embeddings and quotient maps. Given a normal subgroup $H \subseteq G$, show how to create a short exact sequence involving G and H.

- 3. Let $A \leq B$ and $B \subseteq G$. In this problem, you will prove the Diamond Isomorphism Theorem.
 - (a) Show that $AB := \{ab : a \in A, b \in B\}$ and $BA := \{ba : a \in A, b \in B\}$ are equal as
 - (b) Show that AB is a subgroup of G.
 - (c) Show that $B \subseteq AB$ and $A \cap B \subseteq A$.
 - (d) Show that $A/(A \cap B) \cong AB/B$. [Hint: Construct a homomorphism $\phi: A \to AB/B$ that has kernel $A \cap B$, then apply the FHT.]
 - (e) Draw a diagram, or lattice, of G and its subgroups AB, A, B, and $A \cap B$. Interpret the result in Part (c) in terms of this diagram.
- 4. For each part below, consider the group $G = \langle A, B \rangle$ generated by the two matrices given. Assume that matrix multiplication is the binary operation, and $i = \sqrt{-1}$. To what common group is G isomorphic? Write down an explicit isomorphism (you only need to define it for the generators), and a group presentation for G.
 - (b) $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$.
 - (a) $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. (b) $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
- 5. In this exercise, you will prove that if A and B are normal subgroups and AB = G, then

$$G/(A \cap B) \cong (G/A) \times (G/B).$$

(a) Consider the following map:

$$\phi \colon AB \longrightarrow (G/A) \times (G/B), \qquad \phi(g) = (gA, gB).$$

Show that ϕ is a homomorphism.

- (b) Show that ϕ is surjective. That is, given any (g_1A, g_2B) , show that there is some $g = ab \in AB$ such that $\phi(g) = (g_1A, g_2B)$. [Hint: Try $g = a_2b_1$.]
- (c) Find $\ker(\phi)$ [you need to prove your answer is correct] and then apply the Fundamental Homomorphism Theorem.
- 6. For the numbers below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Then, determine which group it is isomorphic to of the form $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$, where $n_{i+1} \mid n_i$.
 - (a) 16

(c) 400

(b) 54

(d) p^2q , where p and q are distinct primes.