Read Chapters 8.4-5 of Visual Group Theory, Chapter 9.2 of IBL Abstract Algebra, or Chapters 10.3 and 12.1 of AATA. Then write up solutions to the following exercises.

1. Let $(\mathbb{Q},+)$ be the group of rational numbers under addtion, $\left(\mathbb{Q}^{*}, \cdot\right)$ the group of non-zero rational numbers under multiplication, and $\left(\mathbb{Q}^{+}, \cdot\right)$ the group of positive rational numbers under multiplication.
(a) Show that $\left(\mathbb{Q}^{*}, \cdot\right) \cong\left(\mathbb{Q}^{+}, \cdot\right) \times C_{2}$. [Hint: Recall that $C_{2}=\left\{e^{0 \pi i}, e^{\pi i}\right\}=\{1,-1\}$.]
(b) Describe the quotient groups $(\mathbb{Q},+) /\langle-1\rangle$ and $\left(\mathbb{Q}^{*}, \cdot\right) /\langle-1\rangle$. In particular, what do the elements (cosets) look like?
(c) Use the Fundamental Homomorphism Theorem to prove that $\left(\mathbb{Q}^{*}, \cdot\right) /\langle-1\rangle \cong\left(\mathbb{Q}^{+}, \cdot\right)$.
2. For Parts (a)-(d), a group G is given together with a normal subgroup H. Illustrate the embedding $\phi: H \rightarrow G$, and the quotient map $q: G \rightarrow G / H$, chained together so that $\operatorname{im}(\phi)=\operatorname{ker}(q)$. An example for $G=\mathbb{Z}_{6}$ and $H=\mathbb{Z}_{2}$ is shown below:

(a) $G=\mathbb{Z}_{6}, H=\mathbb{Z}_{3}$,
(b) $G=D_{3}, H=C_{3}$,
(c) $G=A_{4}, H=V_{4}$,
(d) $G=S_{n}, H=A_{n}$ [don't draw the actual Cayley graphs for this one, just the maps].

Now, answer each of the following questions about each of your answers to Parts (a)-(d).
(e) What map θ into H would satisfy the equation $\operatorname{im} \theta=\operatorname{ker} \phi$? Choose one with the smallest possible domain.
(f) What map θ^{\prime} from G / H would satisfy the equation $\operatorname{im}(q)=\operatorname{ker}\left(\theta^{\prime}\right)$? Choose one with the smallest possible codomain.
(g) Add the two maps θ and θ^{\prime} to your illustration.
(h) The new chain of four homomorphisms is called a short exact sequence. It is one way to use homomorphisms to illustrate quotients, and it shows a connection betwen embeddings and quotient maps. Given a normal subgroup $H \unlhd G$, show how to create a short exact sequence involving G and H.
3. Let $A \leq B$ and $B \unlhd G$. In this problem, you will prove the Diamond Isomorphism Theorem.
(a) Show that $A B:=\{a b: a \in A, b \in B\}$ and $B A:=\{b a: a \in A, b \in B\}$ are equal as sets.
(b) Show that $A B$ is a subgroup of G.
(c) Show that $B \unlhd A B$ and $A \cap B \unlhd A$.
(d) Show that $A /(A \cap B) \cong A B / B$. [Hint: Construct a homomorphism $\phi: A \rightarrow A B / B$ that has kernel $A \cap B$, then apply the FHT.]
(e) Draw a diagram, or lattice, of G and its subgroups $A B, A, B$, and $A \cap B$. Interpret the result in Part (c) in terms of this diagram.
4. For each part below, consider the group $G=\langle A, B\rangle$ generated by the two matrices given. Assume that matrix multiplication is the binary operation, and $i=\sqrt{-1}$. To what common group is G isomorphic? Write down an explicit isomorphism (you only need to define it for the generators), and a group presentation for G.
(a) $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
(c) $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(b) $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & i \\ i & 0\end{array}\right]$.
5. In this exercise, you will prove that if A and B are normal subgroups and $A B=G$, then

$$
G /(A \cap B) \cong(G / A) \times(G / B) .
$$

(a) Consider the following map:

$$
\phi: A B \longrightarrow(G / A) \times(G / B), \quad \phi(g)=(g A, g B)
$$

Show that ϕ is a homomorphism.
(b) Show that ϕ is surjective. That is, given any $\left(g_{1} A, g_{2} B\right)$, show that there is some $g=a b \in A B$ such that $\phi(g)=\left(g_{1} A, g_{2} B\right)$. [Hint: Try $g=a_{2} b_{1}$.]
(c) Find $\operatorname{ker}(\phi)$ [you need to prove your answer is correct] and then apply the Fundamental Homomorphism Theorem.
6. For the numbers below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Then, determine which group it is isomorphic to of the form $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$, where $n_{i+1} \mid n_{i}$.
(a) 16
(c) 400
(b) 54
(d) $p^{2} q$, where p and q are distinct primes.

