Read Chapter 9.1 of Visual Group Theory (VGT), or Chapter 13 of AATA. Then write up solutions to the following exercises.

1. The commutator subgroup of a group G is the subgroup

$$
G^{\prime}=\left\langle a b a^{-1} b^{-1} \mid a, b \in G\right\rangle .
$$

(a) Show that G is abelian if and only if $G^{\prime}=\{e\}$.
(b) Show that $G^{\prime} \unlhd G$.
(c) Show that G^{\prime} is the intersection of all normal subgroups of G that contain the set $C:=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}:$

$$
G^{\prime}=\bigcap_{C \subseteq N \unlhd G} N
$$

(d) If we quotient G by G^{\prime}, then we are in essence, "killing" all non-abelian parts of the Cayley diagram, as shown below:

$a b \neq b a$

Prove algebraically that G / G^{\prime} is indeed abelian.
2. Consider the following nonabelian groups G whose subgroup lattices are shown below.
(i) The dicyclic group $\operatorname{Dic}_{12}=\left\langle a, b \mid a^{4}=b^{6}=1, b a b=a\right\rangle$ of order 12.
(ii) The modular group $M_{16}=\langle s, t| s^{8}=t^{2}=1$, tst $\left.=s^{5}\right\rangle$ of order 16 .
(iii) The quasidihedral group $Q D_{8}=\left\langle\sigma, \tau \mid \sigma^{8}=1, \tau^{2}=1, \sigma \tau=\tau \sigma^{3}\right\rangle$ of order 16 .

Carry out the following steps for each group G.
(a) On the lattice, label each edge with the corresponding index. Then circle every normal subgroup N and determine which familiar group G / N is isomorphic to. Justify why each N must be normal.
(b) Find the commutator subgroup G^{\prime} and the abelianization, G / G^{\prime}.
(c) Using Group Explorer, draw a Cayley diagram with the given generating set.
3. Find the commutator subgroup and abelianization of each of the following groups.
(a) An abelian group A.
(b) The alternating group A_{n}, for $n \geq 5$. [Hint: A_{n} is a simple group, which means its only normal subgroups are $\langle e\rangle$ and A_{n}.]
(c) The dihedral group D_{n}. [Hint: Do the cases of even and odd n separately.]
4. Recall that the automorphism group of $V_{4}=\langle h, v\rangle=\{e, h, v, r\}$, where $r=h v$ is

$$
\operatorname{Aut}\left(V_{4}\right)=\left\langle\alpha, \beta \mid \alpha^{3}=\beta^{2}=(\alpha \beta)^{2}=i d\right\rangle, \quad \text { where } \quad \begin{aligned}
& h \longmapsto r \\
& v \longmapsto r
\end{aligned} \quad \text { and } \quad h \longmapsto r \longmapsto v .
$$

The generating automorphisms are the following permuations of V_{4} :

$$
\alpha: \quad e \quad h \quad \text { and } \quad \beta: \quad e \quad h \int v \quad r
$$

The multiplication table and Cayley diagram of $\operatorname{Aut}\left(V_{4}\right)=\langle\alpha, \beta\rangle$, which highlights how automorphisms are "re-wirings", are shown below:

	$i d$	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
$i d$	$i d$	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	$i d$	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	$i d$	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	$i d$	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

Repeat the above steps for each of the following groups. Use the Cayley diagram defined by the generating set given. Recall that $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong U_{n}$.
(a) $\mathbb{Z}_{5}=\langle 1\rangle$,
(c) $\mathbb{Z}_{3} \times \mathbb{Z}_{2}=\langle(1,0),(0,1)\rangle \cong \mathbb{Z}_{6}$.
(b) $\mathbb{Z}_{6}=\langle 1\rangle$,
(d) $\mathbb{Z}_{8}=\langle 1\rangle$.
5. Let G act on a set S. Prove that the stabilizer $\operatorname{Stab}(s)$ is a subgroup of G for every $s \in S$.
6. Suppose the cyclic group C_{5} acts on a set $S=\{A, B, C, D\}$.
(a) What are the possible sizes of the orbits?
(b) What are the possible stabilizer subgroups of each orbit?
(c) Draw the action diagram.

Fully explain your reasoning for each part.

