Read Chapter 9.1 of *Visual Group Theory* (VGT), or Chapter 13 of *AATA*. Then write up solutions to the following exercises.

1. The commutator subgroup of a group G is the subgroup

$$G' = \langle aba^{-1}b^{-1} \mid a, b \in G \rangle.$$

- (a) Show that G is abelian if and only if $G' = \{e\}$.
- (b) Show that $G' \trianglelefteq G$.
- (c) Show that G' is the intersection of all normal subgroups of G that contain the set $C := \{aba^{-1}b^{-1} \mid a, b \in G\}$:

$$G' = \bigcap_{C \subseteq N \trianglelefteq G} N$$

(d) If we quotient G by G', then we are in essence, "killing" all non-abelian parts of the Cayley diagram, as shown below:

Prove algebraically that G/G' is indeed abelian.

- 2. Consider the following nonabelian groups G whose subgroup lattices are shown below.
 - (i) The dicyclic group $\text{Dic}_{12} = \langle a, b \mid a^4 = b^6 = 1, bab = a \rangle$ of order 12.
 - (ii) The modular group $M_{16} = \langle s, t | s^8 = t^2 = 1, tst = s^5 \rangle$ of order 16.
 - (iii) The quasidihedral group $QD_8 = \langle \sigma, \tau \mid \sigma^8 = 1, \tau^2 = 1, \sigma\tau = \tau\sigma^3 \rangle$ of order 16.

Carry out the following steps for each group G.

- (a) On the lattice, label each edge with the corresponding index. Then circle every normal subgroup N and determine which familiar group G/N is isomorphic to. Justify why each N must be normal.
- (b) Find the commutator subgroup G' and the abelianization, G/G'.
- (c) Using *Group Explorer*, draw a Cayley diagram with the given generating set.

- 3. Find the commutator subgroup and abelianization of each of the following groups.
 - (a) An abelian group A.
 - (b) The alternating group A_n , for $n \ge 5$. [*Hint*: A_n is a simple group, which means its only normal subgroups are $\langle e \rangle$ and A_n .]
 - (c) The dihedral group D_n . [*Hint*: Do the cases of even and odd n separately.]
- 4. Recall that the automorphism group of $V_4 = \langle h, v \rangle = \{e, h, v, r\}$, where r = hv is

$$\operatorname{Aut}(V_4) = \left\langle \alpha, \beta \mid \alpha^3 = \beta^2 = (\alpha\beta)^2 = id \right\rangle, \quad \text{where} \quad \begin{array}{c} h \stackrel{\alpha}{\longmapsto} v \\ v \longmapsto r \end{array} \quad \text{and} \quad \begin{array}{c} h \stackrel{\beta}{\longmapsto} v \\ v \longmapsto h \end{array}$$

The generating automorphisms are the following permuations of V_4 :

$$\alpha: e \quad h \quad v \quad r \qquad \text{and} \qquad \beta: e \quad h \quad v \quad r$$

The multiplication table and Cayley diagram of $\operatorname{Aut}(V_4) = \langle \alpha, \beta \rangle$, which highlights how automorphisms are "re-wirings", are shown below:

	id	α	α^2	β	lphaeta	$\alpha^2\!\beta$
id	id	α	α^2	β	$\alpha\beta$	$\alpha^2\!\beta$
lpha	lpha	α^2	id	lphaeta	$lpha^2\!eta$	β
α^2	α^2	id	α	$\alpha^2\!\beta$	β	$\alpha\beta$
β	β	$\alpha^2\!\beta$	lphaeta	id	α^2	α
lphaeta	lphaeta	β	$lpha^2\!eta$	α	id	α^2
$lpha^2\!eta$	$lpha^2\!eta$	lphaeta	β	α^2	α	id

Repeat the above steps for each of the following groups. Use the Cayley diagram defined by the generating set given. Recall that $\operatorname{Aut}(\mathbb{Z}_n) \cong U_n$.

- (a) $\mathbb{Z}_5 = \langle 1 \rangle$, (c) $\mathbb{Z}_3 \times \mathbb{Z}_2 = \langle (1,0), (0,1) \rangle \cong \mathbb{Z}_6$.
- (b) $\mathbb{Z}_6 = \langle 1 \rangle$, (d) $\mathbb{Z}_8 = \langle 1 \rangle$.

5. Let G act on a set S. Prove that the stabilizer $\operatorname{Stab}(s)$ is a subgroup of G for every $s \in S$.

- 6. Suppose the cyclic group C_5 acts on a set $S = \{A, B, C, D\}$.
 - (a) What are the possible sizes of the orbits?
 - (b) What are the possible stabilizer subgroups of each orbit?
 - (c) Draw the action diagram.

Fully explain your reasoning for each part.