Read Chapters 15.1-15.3 of AATA. Then write up solutions to the following exercises.

1. For each of the following rings R, determine the zero divisors (right and left, if appropriate), and the set $U(R)$ of units.
(a) The set \mathcal{C}^{1} of continuous real-valued functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) The polynomial ring $\mathbb{R}[x]$.
(c) $\mathbb{Z} \times \mathbb{Z}$, where addition and multiplication are defined componentwise.
(d) $\mathbb{R} \times \mathbb{R}$, where addition and multiplication are defined componentwise.
2. Prove that if a left ideal I of a ring R contains a unit, then $I=R$.
3. Let I and J be ideals of a ring R.
(a) Prove that $I+J, I \cap J$, and $I J$ are ideals of R.
(b) If R is commutative, then the set

$$
(I: J)=\{r \in R \mid r J \subseteq I\}
$$

is called the ideal quotient or colon ideal of I and J. Show that $(I: J)$ is an ideal of R.
(c) Consider the ideals $I=4 \mathbb{Z}$ and $J=6 \mathbb{Z}$ of the ring $R=\mathbb{Z}$. Compute $I+J, I \cap J$, $I J,(I: J)$, and $(J: I)$.
(d) Repeat Part (c) for the ideals $I=m \mathbb{Z}$ and $J=n \mathbb{Z}$ of $R=\mathbb{Z}$.
4. The left ideal generated by $X \subseteq R$ is defined as

$$
(X):=\bigcap\{I: I \text { is a left ideal s.t. } X \subseteq I \subseteq R\} .
$$

(a) Prove that the left ideal generated by X is

$$
(X)=\left\{r_{1} x_{1}+\cdots+r_{n} x_{n}: n \in \mathbb{N}, r_{i} \in R, x_{i} \in X\right\} .
$$

(b) The two-sided ideal generated by $X \subseteq R$ is defined by relacing "left" with "twosided" in the definition above. Prove this this is also equal to

$$
\left\{r_{1} x_{1} s_{1}+\cdots+r_{n} x_{n} s_{n}: n \in \mathbb{N}, r_{i}, s_{i} \in R, x_{i} \in X\right\} .
$$

(c) Find a (non-commutive) ring R and a set X such that the left and two-sided ideals generated by X are different.
5. The finite field \mathbb{F}_{4} on 4 elements can be constructed as the quotient of the polynomial $\mathbb{Z}_{2}[x]$ by the ideal $I=\left(x^{2}+x+1\right)$ generated by the irreducible polynomial $x^{2}+x+1$. The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \cong \mathbb{F}_{4}$.

(a) Find a degree-3 polynomial $f \in \mathbb{Z}_{2}[x]$ that is irreducible over \mathbb{Z}_{2}, and a degree-2 polynomial $g \in \mathbb{Z}_{3}[x]$ that is irreducible over \mathbb{Z}_{3}. [Hint: Any polynomial with no roots in the "prime field" \mathbb{Z}_{p} will work.]
(b) Construct Cayley diagrams, addition, and multiplication tables for the finite fields

$$
\mathbb{F}_{8} \cong \mathbb{Z}_{2}[x] /(f) \quad \text { and } \quad \mathbb{F}_{9} \cong \mathbb{Z}_{3}[x] /(g)
$$

6. Prove the Fundamental Homomorphism Theorem (FHT) for rings: If $\phi: R \rightarrow S$ is a ring homomorphism, then $\operatorname{Ker} \phi$ is a two-sided ideal of R, and $R / \operatorname{Ker} \phi \cong \operatorname{Im} \phi$. You may assume the FHT for groups.
