Read Chapters 15.1–15.3 of AATA. Then write up solutions to the following exercises.

- 1. For each of the following rings R, determine the zero divisors (right and left, if appropriate), and the set U(R) of units.
 - (a) The set C^1 of continuous real-valued functions $f: \mathbb{R} \to \mathbb{R}$.
 - (b) The polynomial ring $\mathbb{R}[x]$.
 - (c) $\mathbb{Z} \times \mathbb{Z}$, where addition and multiplication are defined componentwise.
 - (d) $\mathbb{R} \times \mathbb{R}$, where addition and multiplication are defined componentwise.
- 2. Prove that if a left ideal I of a ring R contains a unit, then I = R.
- 3. Let I and J be ideals of a ring R.
 - (a) Prove that I + J, $I \cap J$, and IJ are ideals of R.
 - (b) If R is commutative, then the set

$$(I:J) = \{r \in R \mid rJ \subseteq I\}$$

is called the *ideal quotient* or *colon ideal* of I and J. Show that (I:J) is an ideal of R.

- (c) Consider the ideals $I = 4\mathbb{Z}$ and $J = 6\mathbb{Z}$ of the ring $R = \mathbb{Z}$. Compute I + J, $I \cap J$, IJ, (I:J), and (J:I).
- (d) Repeat Part (c) for the ideals $I = m\mathbb{Z}$ and $J = n\mathbb{Z}$ of $R = \mathbb{Z}$.
- 4. The left ideal generated by $X \subseteq R$ is defined as

$$(X):=\bigcap \left\{ I:\ I \text{ is a left ideal s.t. } X\subseteq I\subseteq R \right\}.$$

(a) Prove that the left ideal generated by X is

$$(X) = \{r_1x_1 + \dots + r_nx_n : n \in \mathbb{N}, r_i \in R, x_i \in X\}.$$

(b) The two-sided ideal generated by $X \subseteq R$ is defined by relacing "left" with "two-sided" in the definition above. Prove this this is also equal to

$$\{r_1x_1s_1 + \dots + r_nx_ns_n : n \in \mathbb{N}, r_i, s_i \in R, x_i \in X\}.$$

(c) Find a (non-commutive) ring R and a set X such that the left and two-sided ideals generated by X are different.

5. The finite field \mathbb{F}_4 on 4 elements can be constructed as the quotient of the polynomial $\mathbb{Z}_2[x]$ by the ideal $I=(x^2+x+1)$ generated by the irreducible polynomial x^2+x+1 . The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field $\mathbb{Z}_2[x]/(x^2+x+1) \cong \mathbb{F}_4$.

+	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x+1	x
x	x	x+1	0	1
x+1	x+1	x	1	0

×	1	x	x+1
1	1	x	x+1
x	x	x+1	1
x+1	x+1	1	x

- (a) Find a degree-3 polynomial $f \in \mathbb{Z}_2[x]$ that is irreducible over \mathbb{Z}_2 , and a degree-2 polynomial $g \in \mathbb{Z}_3[x]$ that is irreducible over \mathbb{Z}_3 . [Hint: Any polynomial with no roots in the "prime field" \mathbb{Z}_p will work.]
- (b) Construct Cayley diagrams, addition, and multiplication tables for the finite fields

$$\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(f)$$
 and $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(g)$.

6. Prove the Fundamental Homomorphism Theorem (FHT) for rings: If $\phi \colon R \to S$ is a ring homomorphism, then $\operatorname{Ker} \phi$ is a two-sided ideal of R, and $R/\operatorname{Ker} \phi \cong \operatorname{Im} \phi$. You may assume the FHT for groups.