1. Let $p \in \mathbb{N}$ be a fixed prime. For each of the three ideals $I=(p),(x)$, and (x, p) in the ring $R=\mathbb{Z}[x]$, do the following steps:
(i) Describe the elements of the ideal formally, as $I=\{\quad: \quad\}$.
(ii) Characterize the polynomials in I in plain English.
(iii) Determine whether I is maximal and/or prime.
(iv) Describe the quotient ring R / I.

Then, repeat the above steps for these ideals but in the ring $\mathbb{Q}[x]$.
2. Let R be a commutative ring with 1 .
(a) Prove that R is an integral domain if and only if 0 is a prime ideal.
(b) Prove that an ideal $P \subseteq R$ is prime if and only if R / P is an integral domain.
(c) Show that every maximal ideal is prime.
(d) Find the group of units $U(R)$ and the maximal ideal(s) of the ring

$$
R=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1, p \nmid b\right\},
$$

where p is a fixed prime number.
3. Let R be a principal ideal domain (PID). A common multiple of $a, b \in R^{*}$ is an element m such that $a \mid m$ and $b \mid m$. Moreover, m is a least common multiple (LCM) if $m \mid n$ for any other common multiple n of a and b.
(a) Prove that any $a, b \in R^{*}$ have an LCM.
(b) Prove that an LCM of a and b is unique up to multiplication of associates, and can be characterized as a generator of the (principal) ideal $I:=(a) \cap(b)$.
4. For any $x=r+s \sqrt{m} \in \mathbb{Q}(\sqrt{m})$, define the norm of x to be $N(x)=r^{2}-m s^{2}$.
(a) Show that $N(x y)=N(x) N(y)$.
(b) Show that $N(x) \in \mathbb{Z}$ if $x \in R_{m}$.
(c) Show that $u \in U\left(R_{m}\right)$ if and only if $|N(u)|=1$.
(d) Show that $U\left(R_{-1}\right)=\{ \pm 1, \pm i\}, U\left(R_{-3}\right)=\{ \pm 1, \pm(1 \pm \sqrt{3}) / 2\}$, and $U\left(R_{m}\right)=\{ \pm 1\}$ for all other negative square-free $m \in \mathbb{Z}$.

