Part 3: Understanding derivatives

Math 1060 Fall 2020 9|3-9/14

Thurs 9|3
Motivating example, revised
The cost of bailding a fease around a
12ft' region is
$$c(x) = $5x + $2(\frac{12}{x} + x + \frac{12}{x})$$

 $= 7x + \frac{2^{3}}{x}$
 $d(x) = 7 + 2x = 31$
 $d(x) = 14 + 12 = 24$
 $d(x) = 21 + 8 = 29$
 $d(x) = 28 + 6 = 34$

Keen observation. The minimum access where the transmitting is horizontal,
i.e., his slope m = 0.
Fri 9/4
Question: What is the "tangent line"? How to define it?
Fun aside: Consider on airplue that tales off
Is there:
 $-A$ first point in time that the plane is on the ground?

gant hair

Curstin: Driving a cer...
Con you: go 60 to 0 instartly?
Notion to 0 instartly?
Notion to 0 instartly?
Notion to 0 instartly?
(F and, here do you start?
Slope of the line through
$$(X_i, y_i)$$
 is (X_i, y_i) is
 $M = \frac{y_i - y_i}{X_i - X_i}$ if $X_i \neq X_i$ "rise one run"
 (X_{ij}, y_i)
 (X_{ij}, y_i)

In grand:
$$\chi(f) = f^{1}$$

 $\chi(f) = \chi(f) = \chi(f) = f^{1}$
 $= \chi(f+h) - \chi(f) = (f+h)^{-1} = \frac{f+2h+h^{2}-\chi}{h}$
 $= \chi(f+h) - \chi = (f+h)^{-1} = \frac{f+2h+h^{2}-\chi}{h}$
 $= \chi(f+h) - \chi = (f+h)^{-1} = \frac{f+2h+h^{2}-\chi}{h}$
 $= \chi(f+h) - \chi = (f+h)^{-1} = \frac{f+2h+h^{2}-\chi}{h}$
 $= \chi(f+h) = \chi$
 $= \chi(f+h) = \chi(f+h$

Ex. Compute the derivative of
$$f(f) = t^{-1}$$
 when a position in
Assume that $f(t+h) - f(t) = \lim_{h \to 0} (t+h)^{-} - t^{-} = \lim_{h \to 0} \frac{t^{+} + 2t_{h} + h^{-} - t^{-}}{h}$
 $= \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = \lim_{h \to 0} 2t + h = 2t$
 $\lim_{h \to 0} \frac{t^{+} + 2t_{h}}{h} = \lim_{h \to 0} 2t + h = 2t$
 $\lim_{h \to 0} \frac{f(t)^{-} + t^{-}}{h} = \lim_{h \to 0} 2t + h = 2t$
 $\lim_{h \to 0} \frac{f(t)^{-} + t^{-}}{h} = \lim_{h \to 0} 2t + h = 2t$
 $\lim_{h \to 0} \frac{f(t)^{-} + t^{-}}{h} = \lim_{h \to 0} 2t + h = 2t$
 $\lim_{h \to 0} \frac{f(t)^{-} + t^{-}}{h} = \lim_{h \to 0} 2t + h = 2t$
 $\lim_{h \to 0} \frac{f(t)^{-} + t^{-}}{h} = \lim_{h \to 0$

Second derivative)

Multiveting example: Let X(H) = pos. d'car (or ball) at time t Then X'(H) = rate of change of position= velocity <math>V(H).

What does the second derivative measure?

F">0 slope of tangent line is increasing

"Concave up"

$$(x,y) \quad y = Mx+b \dots hav to find n \neq b?$$

$$(x,y) \quad y = Mx+b \dots hav to find n \neq b?$$

$$slow \quad n = \frac{y-y_0}{x-x} \implies y-y_0 = M(x-x)$$

$$Plon q(y) \quad x \to y = to approximate f(x) = x^2 t$$

$$x = l.$$

$$V_{21} = f(y) = x^2 \quad x = l, \quad y_0 = f(x_0) = f(r) = l$$

$$f'(x_0) = dx, \quad f'(x_0) = f(r) = 2$$

$$y - y_0 = M(x-x_0)$$

$$y - l = 2(x-1)$$

$$y = dx - l \quad target line to approximate intervections evaluate them
$$Approximation: plug = Mx = l.l$$

$$y = 2(l, l) - l = 2.2 - l = l.2$$

$$i = f(l, l) = (l^2 = l.2$$

$$F(x) = \sqrt{x}. \quad How word you compute f(x) = \sqrt{20} l.$$

$$We juck did n linear (l'st order) approximation.$$

$$(appater in easily do loth order, or low to find a the f(x) = \sqrt{20} l.$$

$$We juck did n linear (l'st order) approximation.$$

$$(appater in easily do loth order, or low to find the f(x) = \sqrt{20} l.$$$$

