Part 6: Understanding integrals

Math 1060
Fall 2020

$$
10 / 9-10 / 21
$$

Fri 1019
Previously: waive studied differential calculus - derivatives as rates of charge.
Given a function $f(x)$, find its derivative, $f^{\prime}(x)$.
Next, well do integral calculus, which is the opposite. Given a rate $f^{\prime}(x)$, find the "antiderivative", $f(x)$.

Bigidea: Function $f(x) \overbrace{\substack{\text { antiderivative } \\ \text { area under curve }}}^{\text {take derivative }} f^{\prime}(x)$ "rall mote of change"
Motivating example: Consider a next.
4-hour road trip, where the velocity you travel is the following:
Question: How for did you travel?
There are two ways to answer.

Method 1: "area under curve"

$$
\left.\begin{array}{l}
1 \leq t \leq 3 \quad\left(60 \frac{m_{i}}{h_{r}}\right)\left(2 h_{r}\right)=120 \mathrm{mi} \\
3 \leq t \leq 4 \quad\left(15 \frac{m_{i}}{h_{r}}\right)\left(1 h_{r}\right)=15 \mathrm{mi}
\end{array}\right\}
$$

Method 2 "odometer"
Check your odometer after i before the trip. Subtract these values.

$$
x(4)-x(1)=\begin{array}{|l|l|l|l|}
\hline 5 & 2 & 0 & 0 \\
\hline
\end{array}-\begin{array}{|l|l|l}
\hline & 0 & 3 \\
\hline
\end{array} 165 \mathrm{mi}
$$

* This is half of the "Fundamental Theorem of Calculus."

It works more generally, not just for piecewise functions.
 Velocity is the derivative of distance Total distance is:

- Area under the curve of $x^{\prime}(t)$
- $x(b)-x(a)$

Key concept: The "net area", or "signed area" from a to b, denoted $\int_{a}^{b} f(x) d x$, is
""integral" "(area above x-axis)-(area below x-axis)"

Why we need signed area (an example):
Consider a road tap:
$0 \leq t \leq 2$ driving away from home at 60 mph $2 \leq t \leq 3$ driving towards home at $30 \mathrm{mph}-30 \mathrm{p}$ How far from home (net dist.) are you?
Ans 1: Signed area under curve $=120 \mathrm{mi}-30 \mathrm{mi}=90 \mathrm{mi}$
Ans 2: GPS readings: $\quad X(3)-X(0)=90 \mathrm{mi}-0 \mathrm{mi}=90 \mathrm{mi}$.

Mon $10 / 12$
Properties of signed area:
(1) $\int_{a}^{a} f(x) d x=0$

(2) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(3) $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$

(4) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$

(5) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$

Recall that we had a limit definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\text { slope of tangent lire. }
$$

Now, well reed a limit definition for (signed) area under the curve. This is motivated by Archimedes limit definition f the area of a circle.

ore (of many) ways to do this

Riemann sums "apposximate area under the cure"
Example: Approximate the area under $f(x)=x^{2}+1$ from $a=0$ to $b=2$.

Here, we are subdividing the interval $[a, b]=[0,2]$ into $n=6$ equal parts, each one having width $\Delta x=2 / 6=1 / 3$.
Left Riemann sum: Area $=f(0) \cdot \Delta x+f\left(\frac{1}{3}\right) \Delta x+f\left(\frac{2}{3}\right) \Delta x+f\left(\frac{3}{3}\right) \Delta x+f\left(\frac{4}{3}\right) \Delta x+f\left(\frac{5}{3}\right) \Delta x$
right Riemann sum: Area $=\quad f\left(\frac{1}{3}\right) \Delta x+f\left(\frac{2}{3}\right) \Delta x+f\left(\frac{3}{3}\right) \Delta x+f\left(\frac{4}{3}\right) \Delta x+f\left(\frac{5}{3}\right) \Delta x+f\left(\frac{6}{3}\right) \Delta x$
wed 10114
Alternatively, one can approximate the area using the midpoint of each bax, or any other point, or with trapezoids.

Regardless of which Riemann sum we choose,

$$
\begin{aligned}
\text { Area }= & \lim _{\Delta x \rightarrow 0}\left(\sum_{i=1}^{n} \text { area of } i^{+h} b o x\right) \\
= & \lim _{\Delta x \rightarrow 0}\left(\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \Delta x\right):=\int_{a}^{b} f(x) d x \\
& \int_{a}^{b} f(x) \quad d x
\end{aligned}
$$

Let's compute this explicitly for $f(x)=x^{2}+1$, ie., $\int_{0}^{2}\left(x^{2}+1\right) d x$.
First, weill review "Sigma notation":

$$
\sum_{k=1}^{6} k=1+2+3+4+5+6=\sum_{i=1}^{6} i
$$

へ "dummy variable"
Properties: $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} \quad$ "break apart sums"

$$
\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k} \quad \text { "pull out constants" }
$$

(butties: $\sum_{k=1}^{n} k=1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$

$$
\begin{aligned}
& \sum_{k=1}^{n} k^{2}=1+4+9+\cdots+(n-1)^{2}+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{k=1}^{n} k^{3}=1+8+27+\cdots+(n-1)^{3}+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

Riemann sum example: Compute $\int_{0}^{2}\left(x^{2}+1\right) d x$. Let $\Delta x=\frac{\alpha-0}{n}=\frac{2}{n}$
Subiatervals $[0,2 / n],\left[\frac{2}{n}, 4 / n\right], \ldots,[2(n-1 / / n, 2]$
Right endpoints: $2 / n, 4 / n, \ldots, 2 i / n, \ldots, 2$

$$
\begin{aligned}
& \text { Area }=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \Delta x \\
&=\sum_{i=1}^{n} f\left(\frac{2 i}{n}\right) \cdot \frac{2}{n} \\
&=\sum_{i=1}^{n}\left[\left(\frac{2 i}{n}\right)^{2}+1\right] \cdot \frac{2}{n}
\end{aligned}=\sum_{i=1}^{n}\left(\frac{8 i^{2}}{n^{3}}+\frac{2}{n}\right) \quad \begin{aligned}
& \text { Fri } 10 \mid 16 \\
&=\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}+\sum_{i=1}^{n} \frac{2}{n} \\
&=\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{2}{n} \sum_{i=1}^{n} 1 \\
&=\frac{8}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right]+\frac{2}{n} \cdot[n]
\end{aligned}
$$

Now, take $\lim _{n \rightarrow \infty}$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{8}{6} \cdot \frac{n(n+1)(2 n+1)}{n^{3}}+\lim _{n \rightarrow \infty} 2 \\
= & \frac{4}{3} \cdot 2+2=\frac{14}{3}
\end{aligned}
$$

Area function: f ix $f(x)$ and a real number, a.
Define $A(x)=\int_{a}^{x} f(t) d t$
= area under the cure from a to x

Clearly, $\quad A(a)=\int_{a}^{a} f(t) d t=0$.
Remark:

$$
A(x+h)-A(x) \approx f(x) \cdot h
$$

Note that $A(x+h)-A(x) \approx f(x) \cdot h$

$$
\Rightarrow \frac{A(x+h)-A(x)}{h} \approx f(x)
$$

Ta he $\lim _{h \rightarrow 0}$ of both sides: $A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=f(x)$
Big idea: If $A(x)$ is the area function of $f(x)$, then $\frac{d}{d x}(A(x))=f(x)$. In other words:
"the derivative; area functions are inverse operations"

This is the Fundamental theorem of calculus, Pat 1
If f is continuous on $[a, b]$ and differentiable on (a, b), then $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
Wed $10 / 21$
We say that $F(x)$ is an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$.
Antiderivatives are not unique!
Antiderivatives of $f(x)=2 x$ include $x^{2}, x^{2}+1, x^{2}+2, \ldots$
Fact: If $F(x), G(x)$ are antiderivatives of $f(x)$, then $F(x)-G(x)=C$, for some constant.
Why: $(F-G)^{\prime}=F^{\prime}-G^{\prime}=C-C=0 \Rightarrow F-G=C$.
Now, consider a function $f(x)$.
We know $A(x)$ is an antiderivative (by FTC 1)
Let $F(x)$ be any other antidenvative.
Then $F(x)=A(x)+C$
Recall: $A(a)=0$

$$
\begin{aligned}
\Rightarrow F(b)-F(a) & =(A(b)+C)-(A(a)+C) \\
& =A(b)=\int_{a}^{b} f(x) d x
\end{aligned}
$$

This is the Fundamental theorem of calculus, Part 2
If f is continuous on $[a, b]$ and F is any antiderivative of f_{1}
then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

