Part 8: Applying integrals

Math 1060
Fall 2020
Oct 30-11/1

Fri $10 / 30$
In this section, weill learn how to compete various volumes of solids using integrals. Then weill apply these techniques to several archrectural structures.

Area between curves

$$
\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

This even works if the region is below or straddles the x-axis
Example 1: Find the area between the curves of $f(x)=5-x^{2} ; g(x)=x^{2}-3$.
First, find points of intersection:

$$
\begin{aligned}
5-x^{2} & =x^{2}-3 \\
8 & =2 x^{2} \Rightarrow x \pm 2 \\
\text { Area } & =\int_{-2}^{2}\left(5-x^{2}\right)-\left(x^{2}-3\right) d x \\
& =\int_{-2}^{2}\left(8-2 x^{2}\right) d x=8 x-\left.\frac{2}{3} x^{3}\right|_{-2} ^{2}=\left(16-\frac{16}{3}\right)-\left(-16-\frac{16}{3}\right)=32-\frac{32}{3}=\frac{64}{3}
\end{aligned}
$$

Example 2: Find the area between the curves $y=\sqrt{x}, y=x-2$, and the x-axis.
(2)

Method 1: Integrate w.r.t. X.
Note that we need to break this into two integrals.

(A) $\int_{0}^{2} \sqrt{x}-0 d x=\int_{0}^{2} x^{1 / 2} d x=\left.\frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{2}=\left.\frac{2}{3} \sqrt{x^{3}}\right|_{0} ^{2}=\frac{2}{3} \sqrt{8}$
(B)

$$
\text { 3) } \begin{aligned}
& \int_{2}^{4} \sqrt{x}-(x-2) d x=\int_{2}^{4} x^{1 / 2}-x+2 d x=\left.\left(\frac{2}{3} x^{3 / 2}-\frac{x^{2}}{2}+2 x\right)\right|_{2} ^{4} \\
= & \left(\frac{2}{3} \sqrt{4^{3}}-\frac{16}{2}+8\right)-\left(\frac{2}{3} \sqrt{2^{3}}-\frac{4}{2}+2\right) \\
= & \left(\frac{2}{3} \cdot 8-8+8\right)-\left(\frac{2}{3} \sqrt{8}-2+4\right)=\frac{16}{3}-\frac{2}{3} \sqrt{8}+2=\frac{10}{3}-\frac{2}{3} \sqrt{8}
\end{aligned}
$$

Total area $=(A)+(B)=\frac{10}{3}$
wed $11 / 4$
Method 2: Integrate w.r.t. y.

$$
\begin{aligned}
& \text { Area }=\int_{0}^{2}(y+2)-y^{2} d y \\
& =\left.\left(\frac{y^{2}}{2}+2 y-\frac{y^{3}}{3}\right)\right|_{0} ^{2} \\
& =\left[\left(2+4-\frac{8}{3}\right)-(0+0-0)\right] \\
& =\frac{10}{3} \quad \text { (much easier!) }
\end{aligned}
$$

Volumes by slicing
Well now lean to derive classic formulas for volumes such as

$$
\operatorname{vol}(\text { cone })=\frac{1}{3} \pi r^{2} h \text { and } \operatorname{vol}(\text { sphere })=\frac{4}{3} \pi r^{3} \text {. }
$$

The method is in some sense, a 3D-vession of how Archimedes computed the area of a circle.

Volume of a core Eden: Slice the cone into layers, like a
 wedding cake. Each layer is \approx cylinder.

$$
\begin{aligned}
\text { Area } & =\pi r^{2} h, \text { radius } r=x \text {-value }=\frac{R}{h} y \\
& =\pi\left(\frac{R}{h} y\right)^{2} d y=\frac{\pi R^{2}}{h^{2}} y^{2} d y \\
\operatorname{Vol}(\nabla) & =\int_{0}^{h} \operatorname{vol}(\rho)=\int_{0}^{h} \frac{\pi R^{2}}{h^{2}} y^{2} d y \\
& =\frac{\pi R^{2}}{h^{2}} \int_{0}^{h} y^{2} d y=\left.\frac{\pi R^{2}}{h^{2}} \frac{y^{3}}{3}\right|_{0} ^{h}=\frac{\pi R^{2}}{h^{2}}\left(\frac{h^{3}}{3}-\frac{0^{3}}{3}\right)=\frac{1}{3} \pi R^{2} h
\end{aligned}
$$

(4) Frill /6

Volume of a hemisphere $\frac{1}{2} \cdot\left(\frac{4}{3} \pi R^{3}\right)=\frac{2}{3} \pi R^{3}$.

$$
\begin{aligned}
& x^{2}+y^{2}=R^{2} \\
\Rightarrow & x= \pm \sqrt{R^{2}-y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Vol of hemisphere } & =\int_{0}^{R} \operatorname{Vol}(\cong) \\
& =\int_{0}^{R} \pi\left(R^{2}-y^{2}\right) d y=\int_{0}^{R}\left(\pi R^{2}-\pi y^{2}\right) d y \\
& =\left(\pi R^{2} y-\pi \frac{y^{3}}{3}\right)_{0}^{R}=\pi R^{3}-\pi \frac{R^{3}}{3}=\frac{2}{3} \pi R^{3}
\end{aligned}
$$

Example 3: Consider the solid formed by revolving the curve $y=\sqrt{x}$ around the x-axis from $x=0$ to $x=4$. Find its volume.

$$
\begin{aligned}
& \overbrace{d x} \begin{array}{l}
0 \\
\vdots \\
d
\end{array}) \\
& \operatorname{Vol}(\pi)=\pi r^{2} h \\
& =\pi(\sqrt{x})^{2} d x \\
& =\pi x d x \\
& \operatorname{Vol}(\pi 0))=\int_{0}^{4} \operatorname{Vol}(\mathbb{0})=\int_{0}^{4} \pi x d x=\left.\pi \frac{x^{2}}{2}\right|_{0} ^{4}=8 \pi
\end{aligned}
$$

These are called solids of revolution.
The method we've been doing is called the dist method. we can do other shapes.

Ex:

Ex:

$$
\begin{aligned}
\operatorname{Vol}(\bowtie) & =\int_{-3}^{1} \operatorname{Vol}(0) \\
& =\int_{1}^{2} \pi\left(e^{x}\right)^{2} d x=\int_{1}^{2} \pi e^{2 x} d x
\end{aligned}
$$

Ex: "Gabriel's horn"

First, we reed to see whit are called "improper integalk", ie, integrating over an asymptote, or where a limit is ∞. Big idem: "treat ∞ as an ordinary number."
(6)

Example: $\cdot \int_{1}^{\infty} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{\infty}=\ln \infty-\ln 1=\infty-0=\infty$
[Technically, $\left.\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\lim _{b \rightarrow \infty}|\ln x|_{1}^{b}=\lim _{b \rightarrow \infty} \ln b\right]$

$$
\text { - } \int_{1}^{\infty} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{\infty}=-\frac{1}{\infty}-\left(\frac{-1}{1}\right)=0+1=1
$$

Bach to Gabriel's Worm:

$$
\begin{aligned}
\operatorname{Vol}(N)=\int_{1}^{\infty} \operatorname{Vd}(0)=\int_{1}^{\infty} \pi\left(\frac{1}{x}\right)^{2} d x & =\pi \int_{1}^{\infty} \frac{1}{x^{2}} d x \\
& =\pi
\end{aligned}
$$

Just for fur, we can compute the surface area.

$$
\begin{array}{rlrl}
\text { Surface area } & =2 \pi r d x \quad & \quad \text { Surface area }=2 \pi r \\
& =2 \pi \frac{r}{x} d x \leqslant \quad=2 \pi r \sqrt{1+f^{\prime}(x)} d x
\end{array}
$$

Thus, surface area $=\int_{1}^{\infty} S A(D)$

$$
\begin{aligned}
& \geqslant \int_{1}^{\infty} S A(\square)=\int_{1}^{\infty} 2 \pi \frac{r}{x} d x \\
& =\left.2 \pi r(\ln x)\right|_{1} ^{\infty}=2 \pi r(\ln \infty-\ln 1)=\infty
\end{aligned}
$$

Thus, Gabriels horn has finite volume, but infinite surface area, "We can Fill it with paint, but not paint the whole surface"
Mon 1119
The following technique is sometimes called "volumes by washers."
Ex: Compute the volume of the region b/w $y=x^{2}$ and $y=x$, rotated around the y-axis.

$$
y=x^{2} \Rightarrow x=\sqrt{y}
$$

$y=x \Rightarrow x=y$
Big idem:

$$
\begin{aligned}
& \int_{0}^{1}\left(\pi y-\pi y^{2}\right) d y=\int_{0}^{1} \pi(\sqrt{y})^{2} d x-\int_{0}^{1} \pi y^{2} d x \\
= & \left.\left(\frac{\pi y^{2}}{2}-\frac{\pi y^{3}}{3}\right)\right|_{0} ^{1}=\left(\frac{\pi}{2}-\frac{\pi}{3}\right)-(0-0)=\frac{\pi}{6}
\end{aligned}
$$

Another way to find the volume of the previous solid is the "shell method"

$$
r_{0} l=2 \pi r h \cdot d x=2 \pi x\left(x-x^{2}\right) d x
$$

$$
\begin{aligned}
& \operatorname{Vol}(2)=\int_{0}^{1} V_{0} l\left(x-x^{2}\right) d x \\
&=\int_{0}^{1} 2 \pi x\left(2 \pi x^{2}-2 \pi x^{3}\right) d x \\
&=\left.\left(\frac{2 \pi x^{3}}{3}-\frac{2 \pi x^{4}}{4}\right)\right|_{0} ^{1} \\
&=\left.2 \pi\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1} \\
&\left.=2 \pi\left(\frac{1}{3}-\frac{1}{4}\right)-(0-0)\right]=\frac{\pi}{6}
\end{aligned}
$$

Arclenth
Goal: Find the leith of a curve $y=f(x)$ from $x=a$ to $x=b$.

$$
\Delta S=\operatorname{arc} \text { length }
$$

$$
\int_{d x}^{d s} d y
$$

$$
d s=\text { "infintesmal }
$$ arc length"

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{(d x)^{2}+(d y)^{2}} \cdot \frac{d x}{d x}=\sqrt{\left((d x)^{2}+(d y)^{2}\right]\left(\frac{d x}{d x}\right)^{2}} \\
& =\sqrt{\left[\left(\frac{d x}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}\right](d x)^{2}}=\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{aligned}
$$

Thus, arc length $=\int_{a}^{b} \sqrt{1+(f(x))^{2}} d x$

Examples:

1. Find the are length of $y=\sqrt{x^{3}}=x^{3 / 2}$ from $x=0$ to $x=4$

$$
\begin{aligned}
& \int_{0}^{4} \sqrt{1+\left(\frac{d}{d x} x^{3 / 2}\right)^{2}} d x \\
= & \int_{0}^{4} \sqrt{1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}} \\
= & \int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x
\end{aligned}
$$

(10)

Let $u=1+\frac{9}{4} x, \quad d u=\frac{9}{4} d x \Rightarrow d x=\frac{4}{9} d u$

$$
\begin{aligned}
& =\int_{x=0}^{x=4} \sqrt{u} \cdot \frac{4}{9} d u=\frac{4}{9} \int_{x=0}^{x=4} u^{1 / 2} d u
\end{aligned}=\left.\frac{4}{9}\left[\frac{2}{3} u^{3 / 2}\right]\right|_{x=0} ^{x=4} .
$$

Remark: Often, one of there integral $\int \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ ends up being too complicated (eg, no closed form soling, or we haven learned the method). For these, Wolfram Alpha is helpful.
Ex 2: Compute the are length of ore full cycle of $\sin x$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{1+\left(\frac{d}{d x} \sin x\right)^{2}} d x \\
= & \int_{0}^{2 \pi} \sqrt{1+(\cos x)^{2}} d x \\
\approx & 7.640 \text { (by wolfram Alpha) }
\end{aligned}
$$

