Part 9: Calculus of domes

Math 1060
Fall 2020
Nov $13-20$
(1.) Hagin Sophia: See PPT slides for history and overview

Our goal is to calculate the weight of the dome.

Find a:

$$
\Rightarrow a=50 \cos 70 \approx 17.1
$$

So $R=52.5, \quad r=50, a=17.1$
(2)

Find V_{1} :

$$
\begin{aligned}
V_{1} & =\int_{a}^{R} \pi(\text { radius })^{2} d y=\int_{a}^{R} \pi \sqrt{R^{2}-y^{2}} d y \\
& =\int_{a}^{R} \pi\left(R^{2}-y^{2}\right) d y=\left.\pi\left(R^{2} y-\frac{y^{3}}{3}\right)\right|_{a=17.1} ^{R=52.5} \\
& =\pi\left(R^{3}-\frac{R^{3}}{3}\right)-\pi\left(R^{2} a-\frac{a^{3}}{3}\right) \\
& =\pi\left[\frac{2}{3} R^{3}-R^{2} a+\frac{1}{3} a^{3}\right]=160233 \mathrm{ft}^{3}
\end{aligned}
$$

$$
V_{2}=\int_{a}^{r} \pi(\text { radius })^{2} d y=\int_{a}^{r} \pi \sqrt{r^{2}-y^{2}} d y \leftarrow \begin{aligned}
& \text { same as } V_{1} \\
& \text { bat replace }
\end{aligned}
$$

$$
o . e=\pi\left[\frac{2}{3} r^{3}-r^{2} a+\frac{1}{3} a^{3}\right] \approx 132733 \mathrm{ft}^{3}
$$

So $V_{1}-V_{2}=27500 \mathrm{ft}^{3}$
The concrete in the dome weighs $\approx 110 \mathrm{~B} / \mathrm{ft}^{3}$
\Rightarrow total weight is $\left(27500 \mathrm{ft}^{3}\right)\left(110 \mathrm{lb} / \mathrm{ft}^{3}\right)$

$$
=3,025,00013 \text {. }
$$

There are 40 supporting ribs $\Rightarrow \frac{3,025,000}{40}=75,625|\mathrm{bs}|_{\text {rib }}$.
Let's calculate the outward force at each buttress

Basic trig: $\left|\vec{F}_{v}\right|=|\vec{F}| \cdot \cos 20 \approx 71,064 \mathrm{lb}$

$$
\left|F_{h}\right|=|\vec{F}| \cos 70 \approx 25,865 \mathrm{~b}
$$

Def: - Vertical cross-sections of a dome are called meridians

- Horizontal corss-sections of a dome are called hoops Compare the force (magnitude is direction) of the dome on a hoop, at various heights.

(4)

The hoop stress is the outward force.

* First principle of structural architecture: Unix the shell can resist the "hoop stress", it will expand along the hoops: cracks will develop along meridians.
(2) Roman Pantheon: See PPT sides for history! overview.

Two key differences b/w Pantheon 9 Hagia Sophia:

1. The inner i outer shell are spheres with different centers
2. The brick is mortar was mixed with pumice at the top to reduce hoop stress.

Wed 11118
weill use the shell method

Recall: Vol of a shell

$$
\begin{aligned}
\text { Vol } 1 & =\int_{a}^{b} 2 \pi x\left[\sqrt{R^{2}-x^{2}}-\left(\sqrt{r^{2}-x^{2}}+D\right)\right] d x \quad \begin{array}{l}
\text { ut } u=R^{2}-x^{2} \\
\Rightarrow d u=-2 x d x
\end{array} \\
& =\int_{a}^{b} 2 \pi x \sqrt{R^{2}-x^{2}} d x-\int_{a}^{b} 2 \pi x \sqrt{r^{2}-x^{2}} d x-\int_{a}^{b} 2 \pi x D d x \\
& =\int_{x=a}^{x=b}-\pi \sqrt{u} d u+\int_{x=a}^{x=b} \pi \sqrt{u} d u-\int_{a}^{b}(2 \pi D) x d x \\
& =-\left.\frac{2}{3} \pi u^{3 / 2}\right|_{x=a} ^{x=b}+\left.\frac{2}{3} \pi u^{3 / 2}\right|_{x=a} ^{x=b}-\left.\pi D x^{2}\right|_{a} ^{b} \\
& =-\left.\frac{2}{3} \pi\left(R^{2}-x^{2}\right)^{3 / 2}\right|_{a} ^{b}+\left.\frac{2}{3} \pi\left(r^{2}-x^{2}\right)^{3 / 2}\right|_{a} ^{b}-\pi D\left(b^{2}-a^{2}\right) \\
& =-656,875+984,818-198,69 y=129,299 \mathrm{ft}^{3}
\end{aligned}
$$

6 Fri M/20

$$
\begin{aligned}
\text { Vol } 2 & =\int_{b}^{c} 2 \pi x\left[\sqrt{R^{2}-x^{2}}-E\right] d x \\
& =\int_{b}^{c} 2 \pi x \sqrt{R^{2}-x^{2}} d x-\int_{b}^{c} 2 \pi E x d x \\
& =-\left.\frac{2}{3} \pi\left(R^{2}-x^{2}\right)^{3 / 2}\right|_{b} ^{c}-\left.\pi E x^{2}\right|_{b} ^{c} \\
& =361442 \\
& =61659 \mathrm{ft}^{3}
\end{aligned}
$$

So, the total volume of the dome is the sum:

$$
129,299+61659=190958 \mathrm{ft}^{3}
$$

