1. Let K be a finite field. The characteristic of K, denoted char K, is the smallest positive integer n for which $n 1:=\underbrace{1+1+\cdots+1}_{n \text { times }}=0$.
(a) Prove that the characteristic of K is prime.
(b) Show that K is a vector space over \mathbb{Z}_{p}, where $p=$ char K.
(c) Show that the order $|K|$ of K (the number of elements it contains) is a prime power.
(d) Show that if K and L are finite fields with $K \subset L$ and $|K|=p^{m}$ and $|L|=p^{n}$, then m divides n.
2. Let X be a vector space over a field K and let X^{\prime} be the the set of linear functions from X to K, also known as the dual space of X.
(a) Let v_{1}, \ldots, v_{n} be a basis for X. For each i, show there exists a unique linear map $f_{i}: X \rightarrow K$ such that $f_{i}\left(v_{i}\right)=1$ and $f_{i}\left(v_{j}\right)=0$ for $j \neq i$.
(b) Show that f_{1}, \ldots, f_{n} is a basis for X^{\prime} (called the dual basis of v_{1}, \ldots, v_{n}).
(c) Consider the basis $v_{1}=(1,-1,3), v_{2}=(0,1,-1)$, and $v_{3}=(0,3,-2)$ of $X=\mathbb{R}^{3}$. Find a formula for each element of the dual basis.
(d) Express the linear map $f \in X^{\prime}$, where $f(x, y, z)=2 x-y+3 z$ as a linear combination of the dual basis, f_{1}, f_{2}, f_{3}.
3. Let S be a subset of X. The annihilator of S is the set

$$
S^{\perp}=\left\{\ell \in X^{\prime} \mid \ell(s)=0 \text { for all } s \in S\right\} .
$$

(a) Show that S^{\perp} is a subspace of X^{\prime}.
(b) Show that $\operatorname{span}(S)$ is the intersection of all subspaces T_{α} of X that contain S :

$$
\operatorname{span}(S)=\bigcap_{S \subseteq T_{\alpha} \leq X} T_{\alpha},
$$

making it well-founded to speak of the "smallest subpace of X that contains S."
(c) Let $Y=\operatorname{span}(S)$. Show that $S^{\perp}=Y^{\perp}$.
4. Let \mathcal{P}_{2} be the vector space of all polynomials $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ over \mathbb{R}, with degree ≤ 2. Let $\xi_{1}, \xi_{2}, \xi_{3}$ be distinct real numbers, and define

$$
\ell_{j}: \mathcal{P}_{2} \longrightarrow \mathbb{R}, \quad \ell_{j}(p)=p\left(\xi_{j}\right) \quad \text { for } \quad j=1,2,3
$$

(a) Show that $\ell_{1}, \ell_{2}, \ell_{3}$ is a basis for the dual space \mathcal{P}_{2}^{\prime}.
(b) Find polynomials $p_{1}(x), p_{2}(x), p_{3}(x)$ in \mathcal{P}_{2} of which $\ell_{1}, \ell_{2}, \ell_{3}$ is the dual basis in \mathcal{P}_{2}^{\prime}.
5. Let W be the subspace of \mathbb{R}^{4} spanned by $(1,0,-1,2)$ and $(2,3,1,1)$. Which linear functions $\ell(x)=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}$ are in the annihilator of W ? Write your answer by giving an explicit basis of W^{\perp}.

