Throughout, X is assumed to be a vector space of dimension $n<\infty$.

1. Show that whenever meaningful,
(a) $(S T)^{\prime}=T^{\prime} S^{\prime}$
(b) $(T+R)^{\prime}=T^{\prime}+R^{\prime}$
(c) $\left(T^{-1}\right)^{\prime}=\left(T^{\prime}\right)^{-1}$.

Here, S^{\prime} denotes the transpose of S. Carefully describe what you mean by "whenever meaningful" in each case.
2. Give a direct algebraic proof of $N_{T^{\prime}}^{\perp}=\left(R_{T}^{\perp}\right)^{\perp}$. (You may use the fact that $N_{T^{\prime}}=R_{T}^{\perp}$, but don't simply take the annihilator of both sides of this equation.)
3. Let \mathcal{P}_{n} be the vector space of all polynomials over \mathbb{R} of degree less than n.
(a) Show that the map $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$ given by

$$
T(p(x))=6 \int_{1}^{x} p(t) d t
$$

is linear. Indicate whether it is $1-1$ or onto.
(b) Let $\mathcal{B}_{3}=\left\{1, x, x^{2}\right\}$ be a basis for \mathcal{P}_{3} and let $\mathcal{B}_{4}=\left\{1, x, x^{2}, x^{3}\right\}$ be a basis for \mathcal{P}_{4}. Find the matrix representation of T with respect to these bases.
4. Let $T: X \rightarrow U$, with $\operatorname{dim} X=n$ and $\operatorname{dim} U=m$. Show that there exist bases \mathcal{B} for X and \mathcal{B}^{\prime} for U such that the matrix of T in block form is

$$
M=\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right]
$$

where I_{k} is the $k \times k$ identity matrix, and the other blocks are either empty or contain all zeros.
5. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with matrix representation $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & -2 \\ -3 & 0 & 3\end{array}\right]$ with respect to the standard basis. What is the matrix representation of \bar{T} with respect to the basis $\{(1,-1,0),(0,1,-1),(1,0,1)\}$?

