Read: Lax, Chapter 5, pages 44–57.

- 1. Let S_n denote the set of all permutations of $\{1, \ldots, n\}$.
 - (a) Prove that $\operatorname{sgn}(\pi_1 \circ \pi_2) = \operatorname{sgn}(\pi_1) \operatorname{sgn}(\pi_2)$.
 - (b) Prove that $sgn(\tau) = -1$ for all transpositions $\tau \in S_n$.
 - (c) Let $\pi \in S_n$, and suppose that $\pi = \tau_k \circ \cdots \circ \tau_1 = \sigma_\ell \circ \cdots \circ \sigma_1$, where $\tau_i, \sigma_j \in S_n$ are transpositions. Prove that $k \equiv \ell \mod 2$.
- 2. Let f be a bilinear form over a K-vector space X with basis $\{x_1, x_2\}$.
 - (a) Assume f is alternating. Determine a formula for f(u, v) in terms of each $f(x_i, x_j)$ and the coefficients used to express u and v with this basis. [Pun intented!]
 - (b) Repeat Part (a) but assume that f is symmetric and f(x, x) = 0 for all $x \in X$.
- 3. Let X be an *n*-dimensional vector space over a field K.
 - (a) Prove that if char $K \neq 2$, then every skew-symmetric multilinear form is alternating.
 - (b) Give an example of a non-alternating skew-symmetric mulitlinear form.
 - (c) Give an example of a non-zero alternating multilinear form such that $f(x_1, \ldots, x_k) = 0$ for some set of linearly independent vectors x_1, \ldots, x_k .
- 4. Let X be an n-dimensional vector space over \mathbb{R} , and let f be a non-degenerate symmetric bilinear form. That is, it has the additional property that for all nonzero $x \in X$, there is some $y \in X$ for which $f(x, y) \neq 0$.
 - (a) Prove that the map $L: X \to X'$ given by $L: x \mapsto f(x, -)$ is an isomorphism.
 - (b) Show that, given any basis x_1, \ldots, x_n for X, there exists a basis y_1, \ldots, y_n such that $f(x_i, y_j) = \delta_{ij}$.
 - (c) Conversely, prove that if $\mathcal{B}_X = \{x_1, \ldots, x_n\}$ and $\mathcal{B}_Y = \{y_1, \ldots, y_n\}$ are sets of vectors in X with $f(x_i, y_j) = \delta_{ij}$, then \mathcal{B}_X and \mathcal{B}_Y are bases for X.
- 5. Let X be an n-dimensional vector space over \mathbb{R} , and let f be a non-degenerate symmetric bilinear form.
 - (a) Show that there exists $x_1 \in X$ with $f(x_1, x_1) \neq 0$.
 - (b) Any fixed $x_1 \in X$ for which $f(x_1, x_1) \neq 0$ induces a *linear* map $T = f(x_1, -)$. Find the dimension of the nullspace $Z_1 := N_T$, and show that the restriction of f to $Z_1 \times Z_1$ is again non-degenerate.
 - (c) Prove that X has a basis $\{z_1, \ldots, z_n\}$ such that $f(z_i, z_j) = \delta_{ij}$.
- 6. Let $A = (c_1, \ldots, c_n)$ be an $n \times n$ matrix (c_i is a column vector), and let B be the matrix obtained from A by adding k times the i^{th} column of A to the j^{th} column of A, for $i \neq j$. Prove that det $A = \det B$. You may assume that the determinant is an alternating n-linear form.