Read: Lax, Chapter 5, pages 44-57.

1. Let S_{n} denote the set of all permutations of $\{1, \ldots, n\}$.
(a) Prove that $\operatorname{sgn}\left(\pi_{1} \circ \pi_{2}\right)=\operatorname{sgn}\left(\pi_{1}\right) \operatorname{sgn}\left(\pi_{2}\right)$.
(b) Prove that $\operatorname{sgn}(\tau)=-1$ for all transpositions $\tau \in S_{n}$.
(c) Let $\pi \in S_{n}$, and suppose that $\pi=\tau_{k} \circ \cdots \circ \tau_{1}=\sigma_{\ell} \circ \cdots \circ \sigma_{1}$, where $\tau_{i}, \sigma_{j} \in S_{n}$ are transpositions. Prove that $k \equiv \ell \bmod 2$.
2. Let f be a bilinear form over a K-vector space X with basis $\left\{x_{1}, x_{2}\right\}$.
(a) Assume f is alternating. Determine a formula for $f(u, v)$ in terms of each $f\left(x_{i}, x_{j}\right)$ and the coefficients used to express u and v with this basis. [Pun intented!]
(b) Repeat Part (a) but assume that f is symmetric and $f(x, x)=0$ for all $x \in X$.
3. Let X be an n-dimensional vector space over a field K.
(a) Prove that if char $K \neq 2$, then every skew-symmetric multilinear form is alternating.
(b) Give an example of a non-alternating skew-symmetric mulitlinear form.
(c) Give an example of a non-zero alternating multilinear form such that $f\left(x_{1}, \ldots, x_{k}\right)=$ 0 for some set of linearly independent vectors x_{1}, \ldots, x_{k}.
4. Let X be an n-dimensional vector space over \mathbb{R}, and let f be a non-degenerate symmetric bilinear form. That is, it has the additional property that for all nonzero $x \in X$, there is some $y \in X$ for which $f(x, y) \neq 0$.
(a) Prove that the map $L: X \rightarrow X^{\prime}$ given by $L: x \mapsto f(x,-)$ is an isomorphism.
(b) Show that, given any basis x_{1}, \ldots, x_{n} for X, there exists a basis y_{1}, \ldots, y_{n} such that $f\left(x_{i}, y_{j}\right)=\delta_{i j}$.
(c) Conversely, prove that if $\mathcal{B}_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathcal{B}_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ are sets of vectors in X with $f\left(x_{i}, y_{j}\right)=\delta_{i j}$, then \mathcal{B}_{X} and \mathcal{B}_{Y} are bases for X.
5. Let X be an n-dimensional vector space over \mathbb{R}, and let f be a non-degenerate symmetric bilinear form.
(a) Show that there exists $x_{1} \in X$ with $f\left(x_{1}, x_{1}\right) \neq 0$.
(b) Any fixed $x_{1} \in X$ for which $f\left(x_{1}, x_{1}\right) \neq 0$ induces a linear map $T=f\left(x_{1},-\right)$. Find the dimension of the nullspace $Z_{1}:=N_{T}$, and show that the restriction of f to $Z_{1} \times Z_{1}$ is again non-degenerate.
(c) Prove that X has a basis $\left\{z_{1}, \ldots, z_{n}\right\}$ such that $f\left(z_{i}, z_{j}\right)=\delta_{i j}$.
6. Let $A=\left(c_{1}, \ldots, c_{n}\right)$ be an $n \times n$ matrix (c_{i} is a column vector), and let B be the matrix obtained from A by adding k times the $i^{\text {th }}$ column of A to the $j^{\text {th }}$ column of A, for $i \neq j$. Prove that $\operatorname{det} A=\operatorname{det} B$. You may assume that the determinant is an alternating n-linear form.
