Read: Lax, Chapter 5, pages 55-56, and Appendix 4, pages 313-316.

1. Prove the following properties of the trace function:
(a) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $m \times n$ matrices A and $n \times m$ matrices B.
(b) $\operatorname{tr}\left(A A^{T}\right)=\sum a_{i j}^{2}$ for all $n \times n$ matrices A. This quantity is the square of the HilbertSchmidt norm of A.
2. Let U, V, and X be vector spaces over a field K. Define a map

$$
\tau: U \times V \longrightarrow U \otimes V, \quad \tau(u, v)=u \otimes v
$$

(a) Prove that τ is bilinear.
(b) Prove that for any linear map $A: U \otimes V \rightarrow X$, the mapping $\alpha:=A \circ \tau$ is bilinear from $U \times V$ to X.
(c) Prove that for any bilinear map $\beta: U \times V \rightarrow X$, there is a unique linear mapping $A: U \otimes V \rightarrow X$ such that $\beta=A \circ \tau$. This is the universal property of the tensor product, and it says that any bilinear map can be "factored through" it. This is illustrated by the following commutative diagram:

3. If $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are bases for U and V, respectively, then it is elementary to show that the pure tensors $\left\{u_{i} \otimes v_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ span $U \otimes V$. Show that these are linearly independent, and conclude that $\operatorname{dim}(U \otimes V)=(\operatorname{dim} U)(\operatorname{dim} V)$. [Hint: Use the canonical basis $\left\{f_{i j}\right\}$ of the space of bilinear functions $U \times V \rightarrow K$, and use the universal property.]
4. Use the universal property of the tensor product to prove the following results:
(a) $U \otimes V \cong V \otimes U$ (hint: let $X=V \otimes U)$;
(b) $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$;
(c) $(U \times V) \otimes W \cong(U \otimes W) \times(V \otimes W)$.

