Read: Lax, Chapter 6, pages 58-69.

1. Let A be an $n \times n$ matrix over \mathbb{C} with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. For a vector $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, define the norm of z by

$$
\|z\|=\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)^{1 / 2}
$$

(a) State and prove a sufficient condition for $\lim _{N \rightarrow \infty}\left\|A^{N} z\right\|=0$ for all $z \in \mathbb{C}^{n}$.
(b) State and prove a sufficient condition for $\lim _{N \rightarrow \infty}\left\|A^{N} z\right\|=\infty$ for all $z \in \mathbb{C}^{n}$.

When we study inner product spaces, we will be able to state and prove necessary conditions as well.
2. Suppose that $B=P A P^{-1}$, and A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n}. What are the eigenvalues and eigenvectors of B ? Prove your claims.
3. Let X be an n-dimensional vector space, and $A: X \rightarrow X$ a linear map with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors v_{1}, \ldots, v_{n}.
(a) Prove that A has the same eigenvalues as the transpose map $A^{\prime}: X^{\prime} \rightarrow X^{\prime}$.
(b) Let $\ell_{1}, \ldots, \ell_{n}$ be the eigenvectors of A^{\prime}. Prove that $\left(\ell_{i}, v_{i}\right) \neq 0$ for $i=1, \ldots, n$.
(c) Explain why every $x \in X$ can be written as $x=a_{1} v_{1}+\cdots+a_{n} v_{n}$, and derive a formula for a_{i}.
(d) Find the dual basis of v_{1}, \ldots, v_{n}.
4. Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
2 & -2 & 14 \\
0 & 3 & -7 \\
0 & 0 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & -4 & 85 \\
1 & 4 & -30 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{ccc}
2 & 2 & 1 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right]
$$

A straightforward calculation shows that the characteristic polynomials are

$$
p_{A}(s)=p_{B}(s)=p_{C}(s)=(s-2)^{2}(s-3)
$$

(a) Find the eigenvectors and the minimal polynomials of each matrix
(b) Find a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3} where $B v_{1}=3 v_{1}, B v_{2}=2 v_{2}$, and $(B-2 I) v_{3}=v_{2}$. Write the matrix of this linear map with respect to this new basis.
(c) Repeat the previous step for the matrix C.

